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In this supplementary material, we show more details on
network computational cost (Sec. 1), PSF visualization of
conventional digital camera and light field camera (Sec. 2),
failure cases (Sec. 3), detailed network architecture (Sec.
4), effect of LFDOF (Sec. 5), qualitative results (AIFNet
vs. Ours) (Sec. 6) and additional qualitative comparison
between IFANet [2] and our method tested on DPDD [1],
RealDOF [2], CUHK [5] and PixelDP [1] (Sec. 7).

1. Computational Cost
We list the computational cost in terms of the number

of network parameters (M), the number of multiply accu-
mulated operations (MAC) on an image of size 1280×720
and the average computation time on 50 RealDOF images.
DPDNetS is implemented with Keras framework on top
of TensorFlow. AIFNet and KPAC are using TensorFlow.
IFANet and ours are based on PyTorch framework. As
shown in Tab. S1, our final model achieves the best perfor-
mance while attaining competitive running time. Besides,
we list the performance of our baseline model, which out-
performs existing methods in terms of computation time.

Model
Evaluations Computational Costs

PSNR↑ SSIM↑ Params (M) MACs (B) Time (s)

DPDNetS [1] 22.870 0.670 31.03 770 0.69
AIFNet [4] 23.093 0.680 41.55 1747 1.25
IFANet [2] 24.709 0.749 10.48 363 0.014
KPAC [6] 23.984 0.716 2.06 113 0.22

Ourb 25.327 0.749 6.96 326 0.004
Our 25.745 0.771 11.69 693 0.011

Tab. S1. Compuational costs comparison.

2. PSF Visualization
We estimate and visualize the PSF obtained by both con-

ventional digital camera and light field camera using the al-
gorithm proposed by Mannan and Langer [3] and Xin et

∗ denotes equal contribution and † denotes corresponding author.

al. [7]. Specifically, we display an image (3840 × 2160)
that contains 8 × 13 disk patterns (Fig. S1) on a monitor
which is imaged at a distance of 50cm using a Canon EOS
R5 and a Lytro Illum. Multiple photos with different defo-
cus blur levels are captured by adjusting the focal distance
of the Canon camera to the depth behind and in front of the
monitor. While for light field camera, only one capture is
needed. Refocusing is then performed using Lytro Power
Tool. The synthetic f number of f/1.4 is used.

Fig. S1. 8× 13 disk calibration pattern.

After capturing, we binarize the images and detect the
centers of all disks, based on which a homography with re-
spect to the calibration patterns (Fig. S1) can be calculated.
We warp the images to eliminate any camera pose misalign-
ment during image capturing. We show more PSF estima-
tion results of Canon EOS R5 in Fig. S3 and S4 and that of
Lytro in Fig. S5 and S6. From top to bottom, the depth is
increased to cover three typical focus cases: front focus, in
focus and back focus.

3. Failure Cases
Our network performs well in removing defocus blur but

it cannot handle motion blur and saturated bokeh. We show
some failure cases in Fig. S2.
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Fig. S2. Failure cases. The input images are from CUHK defocus
blur detection dataset [5].

4. Detailed Network Architecture
The detailed parameters and network structure are shown

in Tab. S2 and S3.

Encoder

Type Input In Out K S Act. N output

conv x 3 32 3 1 lrelu ×1 c1
conv c1 32 32 3 1 lrelu ×2 c2
conv c2 32 64 3 2 lrelu ×1 c3
conv c3 64 64 3 1 lrelu ×2 c4
conv c4 64 128 3 2 lrelu ×1 c5
conv c5 128 128 3 1 lrelu ×2 c6
conv c6 128 256 3 2 lrelu ×1 c7
conv c7 256 256 3 1 lrelu ×1 c8
res-8 c8 256 256 3 1 lrelu ×2 r1
conv r1 256 256 3 1 lrelu ×1 d↓8

Decoder

upconv d↓8 256 128 4 2 lrelu ×1 c9
sum (c6, c9) - - - - - ×1 c10
res-4 c10 128 128 3 1 lrelu ×2 d↓4

upconv d↓4 128 64 4 2 lrelu ×1 c11
sum (c4, c11) - - - - - ×1 c12
res-2 c12 64 64 3 1 lrelu ×2 d↓2

upconv d↓2 64 32 4 2 lrelu ×1 c13
sum (c2, c13) - - - - - ×1 c14
res-1 c14 32 32 3 1 lrelu ×2 d↓1

res-i

identity input - - - - - - cin
conv cin i×32 i×32 3 1 lrelu ×1 cr
conv cr i×32 i×32 3 1 - ×1 cr
sum (cin, cr) - - - - - ×1 cr

Tab. S2. Network architecture.

DRB ↓8
conv x↓8 3 64 3 1 lrelu×1 c1↓8
conv c1↓8 64 128 3 1 lrelu×1 c2↓8
conv c2↓8 128 256 3 1 lrelu×1 c3↓8

concat (d↓8 , c3↓8 ) - - - - - ×1 cat↓8

conv cat↓8 512 256 3 1 lrelu×1 ck1↓8
conv ck1↓8 256 128 3 1 lrelu×1 ck2↓8
conv ck2↓8 128 7×7 1 1 - ×1 K↓8

dynconv (x̂↓8 ,K↓8 ) - - - - - ×1 ∆x̂↓8

conv cat↓8 512 256 3 1 lrelu×1 cr1↓8
conv cr1↓8 256 64 1 1 lrelu×1 cr2↓8
conv cr2↓8 64 3 1 1 lrelu×1 ∆r↓8

sum (x↓8 ,∆x̂↓8 ,∆r↓8) - - - - - ×1 ŷ↓8

↑2 ŷ↓8 - - - - - ×1 x̂↓4

DRB ↓4
conv x̂↓4 3 64 3 1 lrelu×1 c1↓4
conv c1↓4 64 128 3 1 lrelu×1 c2↓4
conv c2↓4 128 128 3 1 lrelu×1 c3↓4

concat (d↓4 , c3↓4 ) - - - - - ×1 cat↓4

conv cat↓4 256 128 3 1 lrelu×1 ck1↓4
conv ck1↓4 128 128 3 1 lrelu×1 ck2↓4
conv ck2↓4 128 7×7 1 1 - ×1 K↓4

dynconv (x̂↓4 ,K↓4 ) - - - - - ×1 ∆x̂↓4

conv cat↓4 256 128 3 1 lrelu×1 cr1↓4
conv cr1↓4 128 64 3 1 lrelu×1 cr2↓4
conv cr2↓4 64 3 1 1 lrelu×1 ∆r↓4

sum (x̂↓4 ,∆x̂↓4 ,∆r↓4) - - - - - ×1 ŷ↓4

↑2 ŷ↓4 - - - - - ×1 x̂↓2

DRB ↓2
conv x̂↓2 3 64 3 1 lrelu×1 c1↓2
conv c1↓2 64 64 3 1 lrelu×1 c2↓2
conv c2↓2 64 64 3 1 lrelu×1 c3↓2

concat (d↓2 , c3↓2 ) - - - - - ×1 cat↓2

conv cat↓2 128 64 3 1 lrelu×1 ck1↓2
conv ck1↓2 64 64 3 1 lrelu×1 ck2↓2
conv ck2↓2 64 7×7 1 1 - ×1 K↓2

dynconv (x̂↓2 ,K↓2 ) - - - - - ×1 ∆x̂↓2

conv cat↓2 128 64 3 1 lrelu×1 cr1↓2
conv cr1↓2 64 64 3 1 lrelu×1 cr2↓2
conv cr2↓2 64 3 1 1 lrelu×1 ∆r↓2

sum (x̂↓2 ,∆x̂↓2 ,∆r↓2) - - - - - ×1 ŷ↓2

↑2 ŷ↓2 - - - - - ×1 x̂↓1

DRB

conv x̂↓1 3 64 3 1 lrelu×1 c1↓1
conv c1↓1 64 64 3 1 lrelu×1 c2↓1
conv c2↓1 64 32 3 1 lrelu×1 c3↓1

concat (d↓1 , c3↓1 ) - - - - - ×1 cat↓1

conv cat↓1 64 32 3 1 lrelu×1 ck1↓1
conv ck1↓1 64 64 3 1 lrelu×1 ck2↓1
conv ck2↓1 64 7×7 1 1 - ×1 K↓1

dynconv (x̂↓1 ,K↓1 ) - - - - - ×1 ∆x̂↓1

conv cat↓1 64 64 3 1 lrelu×1 cr1↓1
conv cr1↓1 64 64 3 1 lrelu×1 cr2↓1
conv cr2↓1 64 3 1 1 lrelu×1 ∆r↓1
sum (x̂↓1 ,∆x̂↓1 ,∆r↓1) - - - - - ×1 ŷ↓1

Tab. S3. Multi-scale dynamic residual block architecture.

5. Effect of LFDOF

Fig. S7 and S8 show the effect of LFDOF dataset on the
network performance supplementing Tab. 3 and Fig. 7 in
the paper (tested on RealDOF [2]). Specifically, Fig. S7
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clearly shows that the network trained on LFDOF is able
to restore very sharp content (second column), but the de-
blurred result is different from the ground truth (last col-
umn) owing to the domain difference. Despite showing
clear texture, it may fail in some regions as shown in Fig.
S8 due to the blur discrepancy between two datasets. It
is proven that training on LFDOF followed by DPDD can
largely improve the network performance in all the regions
(fourth column in Fig. S7 and S8) and successfully adapt
the real image domain.

6. Qualitative Result (AIFNet vs. Ours)
We show qualitative results on the LFDOF [4] test set

(Fig. S23 and S22) supplementing Tab. 8 in the main text.
AIFNet [4] and ours are both using the same training and
testing sets in LFDOF, while our method presents more de-
tails and textures than AIFNet does.

7. Addition Qualitative Results
We show more qualitative results on DPDD [1] (Figs.

S9, S10, S11 and S12), RealDOF [2] (Figs. S13, S14, S15
and S16), CUHK [5] (Figs. S17, S18, S19 and S20) and
PixeDP [1] (Fig. S21). Due to the limit of file size, we only
show the comparison between our method and IFANet as it
is the state-of-the-art method.
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Fig. S3. PSF estimation of Canon EOS R5 focus in front of the screen (first three rows) and on screen (last row). Left: captured
defocus images. Right: estimated PSF. Depth increasing from top to bottom.

4



Estimated PSF

De
pt

h 
in

cr
ea

sin
g

Canon EOS R5 Captured

Fig. S4. PSF estimation of Canon EOS R5 focus behind the screen. Left: captured defocus images. Right: estimated PSF. Depth
increasing from top to bottom.
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Lytro refocusing & synthetic aperture Estimated PSF
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Fig. S5. PSF estimation of Lytro refocuses to the depth in front of the screen (first three rows) and on screen (last row). Left:
refocused defocus images. Right: estimated PSF. Depth increasing from top to bottom.
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Lytro refocusing & synthetic aperture

Fig. S6. PSF estimation of Lytro refocuses to the depth behind the screen. Left: refocused defocus images. Right: estimated PSF.
Depth increasing from top to bottom.
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Input LFDOF DPDD LFDOF & DPDD GT

Fig. S7. Qualitative comparison among our network trained on LFDOF, DPDD and both datasets. The image sample is from
RealDOF dataset [2]. The network trained on LFDOF gives much sharper details and is then adapted to the real image domain when
fine-tuned by DPDD dataset. From left to right: defocused input, deblurred result evaluated on trained on LFDOF, DPDD, LFDOF &
DPDD respectively, and ground truth.
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Input LFDOF DPDD LFDOF & DPDD GT

Fig. S8. Qualitative comparison among our network trained on LFDOF, DPDD and both datasets. The image sample is from
RealDOF dataset [2]. The network trained on LFDOF fails to handle some regions due to the blur discrepancy and performs much better
when fine-tuned by DPDD than the one trained on DPDD only. From left to right: defocused input, deblurred result evaluated on trained
on LFDOF, DPDD, LFDOF & DPDD respectively, and ground truth.
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Input OursIFANet GT

Fig. S9. Qualitative comparison between IFAN [2] and our method evaluated on DPDD dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth.
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Input IFANet Ours GT

Fig. S10. Qualitative comparison between IFAN [2] and our method evaluated on DPDD dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth.
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Input IFANet Ours GT

Fig. S11. Qualitative comparison between IFAN [2] and ours evaluated on DPDD dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth. 12



Input IFANet Ours GT

Fig. S12. Qualitative comparison between IFAN [2] and ours evaluated on DPDD dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth.
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Input IFANet Ours GT

Fig. S13. Qualitative comparison between IFAN [2] and ours evaluated on RealDOF dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth.

14



Input IFANet Ours GT

Fig. S14. Qualitative comparison between IFAN [2] and ours evaluated on RealDOF dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth.

15



Input IFANet Ours GT

Fig. S15. Qualitative comparison between IFAN [2] and ours evaluated on RealDOF dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth.
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Input IFANet Ours GT

Fig. S16. Qualitative comparison between IFAN [2] and ours evaluated on RealDOF dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth.
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Input IFANet Ours

Fig. S17. Qualitative comparison between IFAN [2] and ours evaluated on CUHK dataset. From left to right: defocused input,
deblurred by IFAN and ours. No ground truth is available from CUHK dataset.
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Input IFANet Ours

Fig. S18. Qualitative comparison between IFAN [2] and ours evaluated on CUHK dataset. From left to right: defocused input,
deblurred by IFAN and ours. No ground truth is available from CUHK dataset.
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Input IFANet Ours

Fig. S19. Qualitative comparison between IFAN [2] and ours evaluated on CUHK dataset. From left to right: defocused input,
deblurred by IFAN and ours. No ground truth is available from CUHK dataset.
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Input IFANet Ours

Fig. S20. Qualitative comparison between IFAN [2], and ours evaluated on CUHK dataset. From the left to right: defocused input,
deblurred by IFAN and ours. No ground truth is available from CUHK dataset.
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Input IFANet Ours

Fig. S21. Qualitative comparison between IFAN [2] and ours evaluated on PixelDP dataset. From left to right: defocused input,
deblurred by IFAN and ours. No ground truth is available from PixelDP dataset.
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Input AIFNet Ours GT

Fig. S22. Qualitative comparison between IFAN [2] and ours evaluated on LFDOF dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth.
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Input AIFNet Ours GT

Fig. S23. Qualitative comparison between IFAN [2] and ours evaluated on LFDOF dataset. From left to right: defocused input,
deblurred by IFAN and ours, and ground truth.
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