
Supplementary Material: Simulated Adversarial Testing
of Face Recognition Models

Simulated Adversarial Testing Exploration
In order to explore samples generated by simulated ad-

versarial testing and other simulated testing techniques, we
are able to project the shape and texture components of our
samples onto a plane of two components. We do so for the
first two shape components (roughly controlling for height
and width of the face). We show the results for adversarial
testing, random optimization, Gaussian random testing and
uniform random testing in Figure 1. First we observe the
relative abundance of adversarial examples found using our
method compared to other methods. Next, we can observe
that adversarial testing not only finds adversarial examples,
but that these examples are also very varied. We note that
most unsuccessful runs of adversarial testing occur when
the algorithm converges to local maxima that are located at
the edges of the feasibility domain of [−3, 3]. All plots are
drawn from samples tested on an ArcFace IR-SE-CBAM-
ResNet50.

We now show two plots for adversarial testing on this
network where we project the samples on the plane gener-
ated by the 1st and 2nd shape components, and the 3rd and
4th shape components. Here we discover an interesting phe-
nomenon. In the 1st-2nd shape component plane, samples
are varied and seem roughly uniformly distributed in the
space. This means that although the 1st and 2nd shape com-
ponent clearly have a role in finding adversarial samples,
adversarial samples can be found with many different 1st
and 2nd shape component values. The second plot shows
that for the 3rd and 4th shape components, our adversar-
ial sampling method clearly favors/disfavors some pockets
in the space. For example we find that samples with aver-
age 3rd and 4th shape components tend not to be found by
adversarial testing. We can test the hypothesis of whether
these values are non adversarial by higher-dimensional grid
search, although this would be time consuming. Another
idea is to limit the feasibility domain to these average 3rd
and 4th shape components, and run many instances of ad-
versarial testing. If few or no adversarial samples are found
then there is a chance that this is a space that is highly non-
adversarial. We believe these types of projections can give
a strong intuition over what features affect network perfor-
mance. In Figure 3 and 4 we show the first four shape com-

ponent variations for the FLAME model in frontal and pro-
file poses. We can see that the 3rd and 4th shape component
variations, while not overly noticeable in the frontal pose,
introduce features that are only visible in the profile pose.
For example when the 4th shape component is varied in the
positive direction it tucks the subject’s jaw in. This intro-
duces a frontal/profile ambiguity, and the face verification
network has a harder time correctly verifying pairs of these
faces since it takes as input both the frontal and profile face
images. Similarly, the 3rd shape component introduces a
protuberance of the subject’s head when varied in the pos-
itive direction, which is much more apparent in the profile
image. This is congruent to the adversarial faces that we ob-
tain in Figure 3 of the main paper that show frontal/profile
ambiguous features.

Limitations and Future Work
Even though our adversarial testing algorithm using re-

inforcement learning is much more effective than random
optimization and other sampling methods, it does not have
a perfect rate of finding adversarial examples. It some-
times converges to local maxima that are hard to classify
but nonetheless non-adversarial. We believe that one of the
weaknesses is that it can get stuck in the boundary limits for
the parameters that are being varied, and it has a hard time
getting out of that space. This is especially a large prob-
lem in higher dimensional spaces. We will investigate this
weakness in future work.

While we do exhibit for the first time the fact that two
face recognition networks trained on the same data with
different architectures and losses have vastly different loss
landscapes when face shape and texture are varied, and thus
are learning different things, we have not yet found suitable
hypotheses that are verified by data that explain why this
is the case. We believe this phenomenon requires more in-
depth research and are working on verifying some of our
hypotheses for our next work.

One of the major limitations of our work is the fact that
we find adversarial examples that are simulated. We be-
lieve that the most challenging aspect of this research direc-
tion is verification of simulated adversarial samples using
real data. This aspect is so challenging that it has been ne-
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Figure 1. Comparison of adversarial/non-adversarial samples for different testing methods, projected onto the 1st and 2nd shape component
plane.

Figure 2. Comparison of adversarial/non-adversarial samples
for simulated adversarial testing, projected onto the 1st/2nd and
3rd/4th shape component planes.

glected by prior research. Nevertheless, many works have
been accepted to top conferences without treating this spe-
cific problem due to the potential they have in furthering our
knowledge about robustness issues of neural networks with
realistic variation of stimuli [1, 6, 9, 11, 12]. Even the best
simulators that are currently available to the computer vi-
sion research community exhibit a substantial domain gap
with real data [3, 7, 8, 10]. For this reason, it is difficult
to verify the transfer capability of certain features. Of the
different attributes that were available to us, head pose is
one of the most reliable in terms of transfer due to several
reasons: the ability to easily extract it from real images us-
ing a head pose estimation network, the 1-to-1 correspon-
dence between head pose in simulated and real situations,
and the low-dimensional nature of the attribute that can be
more easily analyzed and plotted in a curve as shown in
Figure 2. Due to all of these reasons we present the first
link between simulated adversarial samples in the simulated
and real world using this attribute. In the near-future, with
more advanced simulators, we expect work to be able to
confirm many more strong links between simulated and real
samples. Just as [1] found that camera pose influences the
predictions of a neural network in simulated data, we show

Figure 3. Shape variations along different shape components for
the FLAME model in a frontal pose.

that pose, shape and texture jointly influence predictions of
a face recognition network, but we go one step further and
show that pose similarly impacts performance in the real
and simulated world. Finally, in principle, it is almost im-
possible to find a real face that is arbitrarily close to any
face we simulate. This is simply due to the fact that shape
and texture are very high-dimensional, such that a point has
very few close neighbors given a fixed-size real dataset. To
find a very close sample we would have to collect a dataset



Figure 4. Shape variations along different shape components for
the FLAME model in a profile pose.

that is extremely large.

Societal Impact
The plausible negative social consequences of this work

are tightly linked with overall negative consequences of fa-
cial analysis systems. An approach that improves testing for
face recognition systems such as the one we propose can be
used to improve recognition rates on minorities, persecuted
groups and oppressed individuals. This is a larger problem
acting on any work that can potentially impact facial analy-
sis, and we argue that our work has an asymmetric potential
for applications that have a positive social impact. Given
that researchers have proven that there exists gender and
racial bias of beneficial face analysis systems [2, 4, 5], by
better testing such systems these biases can be diagnosed
and mitigated, meaning that minorities can more readily
benefit from these technologies.

Another important point is that a major bottleneck for
our work is a simulator that is expressive and realistic. Bias
and lack of expressiveness of a simulator might mean that
bias in the face recognition network is not correctly de-
tected. We urge developers of future simulators to take into
account the bias of their training population in order to in-

crease the expressiveness of their simulator and decrease the
bias. We also urge them to understand the power of such a
tool for robustness and bias analysis and to distribute the
model responsibly, similar to the FLAME head model [7]
team.
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