
A.1 Experimental Details for Section 3.2

For both the encoders and decoders, we use four fully-
connected two-dimensional convolutional layers with 128
channels and a 3x3 kernel. We additionally use weight-
normalization at each layer and PReLU activation units. Where
relevant, we downsample with 2-stride convolutions at the third
convolution, and upsample using a transposed convolution at
the third convolution.

For training, we use the Adam optimizer with default
learning settings and an initial learning rate of 5×10−4. We ex-
ponentially anneal this learning rate to 1×10−5 during training.

Unlike stochastic posterior sampling, where we can
train with continuous latent variables because discretization
schemes cancel across distributions, deterministic posterior
sampling requires discretization during training. Because the
discrteization operation (i.e. rounding) is not differentiable, we
adopt the popular technique of adding uniform noise during
training, such that our discretized latent variable is defined by

ẑ(l)=z(l)+ϵ, ϵ∼U
(
−δ

2
,
δ

2

)
, (1)

where δ is the uniform discretization bin and U represents a
uniform distribution. In practice, we take δ=1.

A.2 Masked 3D Convolutions

For large k it becomes impractical to train using two-
dimensional convolutions. Doing so typically necessitates a
serial scheme across data partitions at a given latent variable.
One approach to train our models in parallel is to use masked
three-dimensional convolutions. We achieve this by expanding
our downsampled data tensors into a d×Ck2×H×W volume,
where d is some auxiliary dimension.

In order to retain the causality constraints, we build our
approach of two steps:

1. We use an off-center convolution of stride C to enforce the
autoregressive structure within sub-blocks. We define this
operation as one that concatenates a zero-tensor of dimen-
sion d×C×H×W to the data variable along the auxiliary
dimension and then applies the convolution as described.
The result of applying this convolution is a f×k2×H×W
tensor, where f are the output channels of the convolution.

2. We then apply repeated masked three-dimensional convo-
lutions to the output of the the off-center convolution. To
enforce the causality constraint between sub-blocks we
apply a point-wise mask to the kernels prior to convolution.
We define two types of masks: type ‘A’ and ‘B’. We use B-
type masks at all locations apart from the input, where use
an A-type mask. We describe these masks in more detail
below, and visualise them for a 3×3×3 kernel in Figure 1.

For a three-dimensional kernel of depth d, height h and
width w, consider the following masks that we apply as a
point-wise multiplication to the kernel.

A-Type Mask

Md,h,w=

{
1 if d≤⌊k/2⌋
0 else

. (2)

B-Type Mask

Md,h,w=

{
1 if d≤⌈k/2⌉
0 else

. (3)

Figure 1. A 3×3×3 kernel masking strategies. Mask type ‘B’ left; type
‘A’ right. Dark grey elements indicates zeros; light elements indicate
ones. Masks are applied as point-wise multiplications to the kernel.

A.3 Visualisation and Coding Scheme for
SHVC-ArIB
Variable Dependencies In Figure 2 and Figure 3, we illustrate
the differences in the dependency structures in the priors and
posteriors of SHVC and SHVC-ArIB. For ease of presentation,
we do so using one latent variable (i.e. L=1) and assume k=2.
We further assume z(1) is two-times smaller in spatial resolution
that x but has the same number of channels, i.e. C=3.

Coding Schemes Here we use the above model specification
as an example to illustrate the encoding and decoding processes
of SHVC and SHVC-ArIB. Encoding and decoding algorithms
for SHVC can be found in Algorithms 1 and 2. Encoding
and decoding algorithms for SHVC-ArIB can be found in
Algorithms 3 and 4. At the global level, the coding algorithm
is consistent with that of Bit-Swap, and at the local level, the en-
coding of slices in latent and the data is conducted in the reverse
order. Since the above model only involves one latent variable,
the global level Bit-Swap degenerates to the original bb-ANS.

A.4 SHVC Architecture and Experimental Details
For both our encoder and decoder architectures, we use

8-layer Residual networks with PReLU activation units
and weight-normalization. For CIFAR10 we additionally



 

 

 

 

 

 

 

 

Figure 2. A comparison of the factorisation used in the priors of SHVC (left) and SHVC-ArIB (right). Variable groupings are represented by
coloured blocks. Arrows indicate explicit dependencies. In SHVC-ArIB, there is no direct link between z(1) (blue) and x7:12 (green).

use dropout layers between residual connections to prevent
overfitting.

To highlight the effectiveness of our approach, we addition-
ally train a small ”Lite” model, which uses four fully-connected
convolutional layers. Here we reduce the number of channels
as we downsample the latent variables across layers. These are
detailed as follows:

• p(x|z(1)) uses 32 channels.

• p(z(1)|z(2)) uses 24 channels.

• p(z(2)|z(3)) uses 16 channels.

• p(z(3)|z(4)) uses 8 channels, if it exists.

For training, we use the Adam optimizer with default learn-
ing settings and an initial learning rate of 5×10−4. We exponen-
tially anneal this learning rate to 1×10−5 during training. We
further use gradient-clipping to control for numerical stability.

We run all of our experiments on a single NVIDIA Tesla
V100.



 

 

 

 

 

 

 

 

Figure 3. A comparison of the factorisation used in the posteriors of SHVC (left) and SHVC-ArIB (right). Variable groupings are represented
by coloured blocks. Arrows indicate explicit dependencies. In SHVC-ArIB, there is no direct link between z(1) (blue) and x7:12 (green).



Algorithm 1 SHVC Encoding

Input: data to compress x
Step 0: Get auxiliary initial bits c0
Step 1: Decode z(1) with q(z(1)|x)
Step 2: Encode x with p(x|z(1))

Encode x12 with p(x12|x1:11,z(1))
Encode x11 with p(x11|x1:10,z(1))
Encode x10 with p(x10|x1:9,z(1))
...
Encode x2 with p(x2|x1,z(1))
Encode x1 with p(x1|z(1))

Step 3: Encode z(1) with p(z(1))

Encode z(1)12 with p(z
(1)
12 |z

(1)
1:11)

Encode z(1)11 with p(z
(1)
11 |z

(1)
1:10)

Encode z(1)10 with p(z
(1)
10 |z

(1)
1:9)

...
Encode z(1)2 with p(z

(1)
2 |z(1)1 )

Encode z(1)1 with p(z
(1)
1 )

Output: final bit stream c

Algorithm 2 SHVC Decoding

Input: bit stream c
Step 1: Decode z(1) with p(z(1))

Decode z(1)1 with p(z
(1)
1 )

Decode z(1)2 with p(z
(1)
2 |z(1)1 )

...
Decode z(1)10 with p(z

(1)
10 |z

(1)
1:9)

Decode z(1)11 with p(z
(1)
11 |z

(1)
1:10)

Decode z(1)12 with p(z
(1)
12 |z

(1)
1:11)

Step 2: Decode x with p(x|z(1))
Decode x1 with p(x1|z(1))
Decode x2 with p(x2|x1,z(1))
...
Decode x10 with p(x10|x1:9,z(1))
Decode x11 with p(x11|x1:10,z(1))
Decode x12 with p(x12|x1:11,z(1))

Step 3: Encode z(1) with q(z(1)|x)
Output: auxiliary initial bit stream c0, data to decompress x

Algorithm 3 SHVC-ArIB Encoding

Input: data to compress x
Step 0: Get autoregressive initial bits by encoding x7:12

Encode x12 with p(x12|x1:11)
...
Encode x7 with p(x7|x1:6)

Step 1: Decode z(1) with q(z(1)|x1:6)
Step 2: Encode x1:6 with p(x1:6|z(1))

Encode x6 with p(x6|x1:5,z(1))
...
Encode x1 with p(x1|z(1))

Step 3: Encode z(1) with p(z(1))

Encode z(1)12 with p(z
(1)
12 |z

(1)
1:11)

Encode z(1)11 with p(z
(1)
11 |z

(1)
1:10)

Encode z(1)10 with p(z
(1)
10 |z

(1)
1:9)

...
Encode z(1)2 with p(z

(1)
2 |z(1)1 )

Encode z(1)1 with p(z
(1)
1 )

Output: final bit stream c

Algorithm 4 SHVC-ArIB Decoding

Input: bit stream c
Step 1: Decode z(1) with p(z(1))

Decode z(1)1 with p(z
(1)
1 )

Decode z(1)2 with p(z
(1)
2 |z(1)1 )

...
Decode z(1)10 with p(z

(1)
10 |z

(1)
1:9)

Decode z(1)11 with p(z
(1)
11 |z

(1)
1:10)

Decode z(1)12 with p(z
(1)
12 |z

(1)
1:11)

Step 2: Decode x1:6 with p(x1:6|z(1))
Decode x1 with p(x1|z(1))
...
Decode x6 with p(x6|x1:5,z(1))

Step 3: Encode z(1) with q(z(1)|x1:6)
Step 4: Decode x7:12 with p(x7:12|x1:6)

Decode x7 with p(x7|x1:6)
...
Decode x12 with p(x12|x1:11)

Output: data to decompress x


