Backdoor Attacks on Self-Supervised Learning - Supplementary Material

Aniruddha Saha!, Ajinkya Tejankar?, Soroush Abbasi Koohpayegani®, Hamed Pirsiavash?
! University of Maryland, Baltimore County 2 University of California, Davis

anisahal@umbc.edu, atejankar@ucdavis.edu, soroush@umbc.edu, hpirsiav@ucdavis.edu

laptop retriever H. pointer

H .

Rottweiler tabby cat ambulance pickup truck laptop goose pirate ship gasmask vacuum cleaner lobster

cauliflower

e

Figure 1. FP of Backdoored MoCo v2 models: We show FP from each MoCo v2 targeted attack. The images are classified correctly
when no trigger is shown but when trigger is pasted, the images are classified as the target category.

handrail dung beetle grass snake Chihuahua milk can

plckup truck vacuum cleaner lobster

Rottweiler tabby cat ambulance pickup truck laptop goose

Figure 2. FP of Backdoored BYOL models: We show FP from each BYOL targeted attack. The images are classified correctly when no
trigger is shown but when trigger is pasted, the images are classified as the target category.

oA
K
® Target Category ® Target Category
A Patched Data A Patched Data
BYOL Backdoored model BYOL Clean model

#. o5 ° ")‘
A e AA
ed y : L a7 a
- e o0 .
| ° ° ot. &
° % .o %
°o® ‘8 e F 4 "
® @ L] A A A
A
’% 4 Y 4 Y
e .,,t " A A ° &
A
Y YN oy
® Target Category A ® Target Category
A Patched Data A Patched Data
MSF Backdoored model MSF Clean model

Figure 3. t-SNE visualizations of model embeddings: This figure shows BYOL Backdoored model (top row) for target attack category
gasmask and MSF Backdoored model (bottom row) for target attack category laptop. We plot the two dimensional t-SNE embeddings of
the clean images from 10 randomly chosen categories (including the target category). The clean target images are purple circles. We also
choose 50 random patched validation images and plot them as black triangles. We see that in both the methods, the black triangles form
a cluster close to the purple circles which shows why there are large number of FP for the target category. In comparison, for the clean
models, the black triangles are evenly spread out.

Target class Trigger Method Clean model Backdoored model
1D Clean data Patched data Clean data Patched data
Acc (%) | FP | Acc (%) | FP Acc (%) | FP [Acc (%) | FP
MoCo v2 [1] 62.22 28 57.04 25 61.28 23 41.66 1310
BYOL [7] 72.92 15 65.96 19 72.72 24 38.74 1977
Rottweiler 10 MSF[11] 67.48 26 62.96 21 68.66 27 43.22 382
Jigsaw [10] 36.02 62 30.94 58 35.1 59 31.62 56
RotNet [5] 40.09 43 34.22 55 40.8 43 25.2 38
MoCo v2 62.22 7 56.98 3 61.92 5 454 1369
BYOL 72.92 2 66.52 1 72.3 5 37.52 2514
tabby cat 11 MSF 67.48 4 62.22 4 69.2 3 40 156
Jigsaw 36.02 40 31.94 9 35.52 34 31.16 4
RotNet 40.09 22 33.76 15 39.91 26 20.34 0
MoCo v2 62.22 12 57.86 11 61.52 9 56.06 72
BYOL 72.92 10 66.72 12 72.22 10 49.06 429
ambulance 12 MSF 67.48 10 62.94 9 68.48 10 32.26 2908
Jigsaw 36.02 37 32.02 91 35.66 34 31.78 82
RotNet 40.09 22 34.22 28 41.12 23 35.63 26
MoCo v2 62.22 14 57.9 16 62.2 17 55.62 158
BYOL 72.92 10 66.28 9 73.46 10 58.44 564
pickup truck 13 MSF 67.48 15 63.58 15 68.38 15 58.48 482
Jigsaw 36.02 30 30.78 28 35.74 31 27.56 27
RotNet 40.09 20 34.71 26 39.61 21 34 39
MoCo v2 62.22 21 57.16 18 60.84 31 49.84 735
BYOL 72.92 17 66.5 20 71.94 26 23.56 3522
laptop 14 MSF 67.48 31 62.98 6 67.64 23 36.74 2065
Jigsaw 36.02 36 32.4 43 34.48 35 30.48 52
RotNet 40.09 29 3491 41 40.53 33 28.05 91
MoCo v2 62.22 21 57.36 13 62.12 24 52.52 544
BYOL 72.92 10 66.06 11 72.98 9 33.6 2408
goose 15 MSF 67.48 18 63.96 16 68.14 11 24.8 3379
Jigsaw 36.02 45 31.94 50 34 42 31.08 61
RotNet 40.09 39 34.57 43 40.92 32 23.21 20
MoCo v2 62.22 3 57.62 9 61.18 4 50.86 591
BYOL 72.92 3 66.64 2 73.16 2 53.86 1138
pirate ship 16 MSF 67.48 5 63.12 6 68 4 50.82 996
Jigsaw 36.02 23 30.66 23 35.82 29 32.36 28
RotNet 40.09 18 34.85 29 39.97 13 34.36 30
MoCo v2 62.22 38 57.98 33 61.18 37 54.12 257
BYOL 72.92 30 66.14 36 72.38 23 10.92 4274
gas mask 17 MSF 67.48 18 63.02 30 68.62 16 41.64 1262
Jigsaw 36.02 37 29.96 51 35.06 43 28.78 54
RotNet 40.09 39 34.85 51 40.82 51 21.72 25
MoCo v2 62.22 43 57.5 29 61.84 42 54.62 218
BYOL 72.92 50 66.24 23 73.06 37 50.52 682
vacuum cleaner 18 MSF 67.48 38 62.58 15 67.88 39 322 2365
Jigsaw 36.02 56 31.58 99 34.32 43 30.68 66
RotNet 40.09 14 35.43 34 40.7 41 18.33 44
MoCo v2 62.22 26 57.72 32 62.04 18 49.72 805
BYOL 72.92 17 66.64 36 73.02 19 45.66 1214
American lobster 19 MSF 67.48 17 62.88 20 68.6 17 46.04 919
Jigsaw 36.02 29 29.5 28 35.38 22 29.46 25
RotNet 40.09 34 34.57 32 41.58 36 24.66 2
MoCo v2 62.22 21.3 57.51 18.9 61.61 21.0 51.04 605.9
BYOL 72.92 16.4 66.37 16.9 72.72 16.5 40.19 1872.2
Average - MSF 67.48 18.2 63.02 14.2 68.36 16.5 40.62 1491.4
Jigsaw 36.02 39.5 31.17 48 35.11 37.2 30.50 45.5
RotNet 40.09 28.0 34.61 354 40.60 31.9 26.55 31.5

Table 1. Targeted attack on ImageNet-100: We use 0.5% poison injection rate. Each experiment has a separate target category and
trigger. SSL methods are trained on poisoned ImageNet-100 data and a linear classifier is trained on /0% ImageNet-100 labeled data. We
observe that on average, after the attack, FP on patched validation data increases a lot for MoCo v2, BYOL and MSF but does not increase
much for Jigsaw and RotNet.

1. Experiment Details for Reproducibility

MoCo v2: MoCo v2 uses an embedding size of 128,
queue size of 65536, queue momentum of 0.999. We use an
SGD optimizer with initial learning rate of 0.06, momen-
tum of 0.9, weight decay of le-4 and a cosine learning rate
schedule [9]. We use the standard MoCo v2 augmentation
set. The models are trained for 200 epochs with a batch size
of 256 which takes ~ 12 hours on 2 NVIDIA RTX 2080 Ti
GPUs. We use the MoCo v2 implementation of [13] avail-
able here [12]. For linear classification, we use SGD with
initial learning rate of 0.01, weight decay of le-4, and mo-
mentum of 0.9 and train for 40 epochs. At epochs 15 and
30, the learning rate is multiplied by 0.1.

BYOL: BYOL uses an embedding size of 128, Adam
optimizer with initial learning rate 2e-3, weight decay of
le-6 and a step learning rate decay at epoch 150 and 175
with gamma 0.2. We use the standard BYOL augmentation
set. The models are trained for 200 epochs with a batch size
of 512 which takes ~ 12 hours on 4 NVIDIA RTX 2080 Ti
GPUs. We use the BYOL implementation of [3] available
here [2]. For linear classification, we use Adam with initial
learning rate le-2, a cosine learning rate schedule to end at
learning rate 1e-6 and train for 500 epochs.

MSEF': MSF uses an MLP layer with hidden layer dimen-
sion of 1024, projection layer dimension of 128 and a queue
momentum of 0.99. The memory bank size is 128k. We use
SGD with an initial learning rate of 0.05, momentum 0.9,
weight decay le-4 and a cosine learning rate schedule [9].
We use 10 nearest neighbours. The models are trained for
200 epochs with a batch size of 256 which takes ~ 12 hours
on 2 NVIDIA RTX 2080 Ti GPUs. We use the MSF im-
plementation of available here [8]. For linear classification,
we use SGD with initial learning rate of 0.01, weight decay
of le-4, and momentum of 0.9 and train for 40 epochs. At
epochs 15 and 30, the learning rate is multiplied by 0.1.

Jigsaw: Jigsaw uses the 2000 size permutation set. We
use an SGD optimizer with initial learning rate 0.01, mo-
mentum 0.9, weight decay of le-4 and a step learning rate
schedule to drop at 30, 60, 90 and 100 epochs with a gamma
of 0.1. The models are trained for 105 epochs. The hyper-
parameter choices are close to ones used in [6]. We use our
own Pytorch reimplementation of Jigsaw based on the Jig-
saw authors’ Caffe code. For linear classification, we use
SGD with initial learning rate 0.01, weight decay le-4, and
momentum 0.9 and train for 40 epochs. At epochs 15 and
30, the learning rate is multiplied by 0.1.

RotNet: RotNet uses 4 rotation angles (0°, 90°, 180°
and 270°). We use an SGD optimizer with initial learn-
ing rate 0.05, momentum 0.9, weight decay of le-4 and
a step learning rate schedule to drop at 30, 60, 90 and
100 epochs with a gamma of 0.1. The models are trained
for 105 epochs. The hyperparameter choices are close to
ones used in [6]. We use the authors’ Pytorch implementa-

tion available here [4] with minor modifications for Pytorch
>1.0 compatibility. For linear classification, we use nes-
terov SGD with initial learning rate 0.1, weight decay Se-4,
and momentum 0.9 and train for 40 epochs. The learning
rate is decayed at epochs 5, 15, 25 and 35.

MAE: MAE uses the ViT-B architecture with 16x16 in-
put patches. We use a batch size of 128 per GPU, mask ratio
of 0.75, base learning rate 1.5e-4, weight decay of 0.05 and
train for 800 epochs. We use 40 epochs of warm up. The
training takes 15 hrs on 8 TITAN RTX GPUs. For finetun-
ing, we use a batch size of 128 per GPU, base learning rate
of 5e-4, layer decay 0.65, weight decay 0.05, drop path 0.1,
mixup 0.8, cutmix 1.0, reprob 0.25 and train for 100 epochs.

References

[1] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020. 3

[2] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,
and Nicu Sebe. Official repository of the paper whiten-
ing for self-supervised representation learning. https:
//github.com/htdt/self-supervised, 2020. 4

[3] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto,
and Nicu Sebe. Whitening for self-supervised representation
learning. arXiv preprint arXiv:2007.06346, 2020. 4

[4] Spyros Gidaris, Praveer Singh, and Nikos Ko-
modakis. Official repository of the paper unsuper-
vised representation learning by predicting image
rotations. https ://github.com/gidariss /
FeatureLearningRotNet, 2018. 4

[5] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. In International Conference on Learning Representa-
tions, 2018. 3

[6] Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew
Leavitt, Min Xu, Benjamin Lefaudeux, Mannat Singh,
Vinicius Reis, Mathilde Caron, Piotr Bojanowski, Armand
Joulin, and Ishan Misra. Vissl. https://github.com/
facebookresearch/vissl, 2021. 4

[7] Jean-Bastien Grill, Florian Strub, Florent Altché, and et
al. Bootstrap your own latent - a new approach to self-
supervised learning. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 21271-21284, 2020. 3

[8] Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and
Hamed Pirsiavash. Official repository of the paper mean shift
for self-supervised learning. https://github.com/
UMBCvision/MSF, 2021. 4

[9] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 4

[10] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In ECCV,
pages 69—84. Springer, 2016. 3

[11] Koohpayegani Soroush Abbasi, Ajinkya Tejankar, and
Hamed Pirsiavash. Mean shift for self-supervised learning.
In International Conference on Computer Vision (ICCV),
2021. 3

https://github.com/htdt/self-supervised
https://github.com/htdt/self-supervised
https://github.com/gidariss/FeatureLearningRotNet
https://github.com/gidariss/FeatureLearningRotNet
https://github.com/facebookresearch/vissl
https://github.com/facebookresearch/vissl
https://github.com/UMBCvision/MSF
https://github.com/UMBCvision/MSF

[12]

[13]

Tongzhou Wang and Phillip Isola. Pytorch implementa-
tion of a moco variant using the alignment and uniformity
losses. https://github.com/SsnL/moco_align_
uniform, 2020. 4

Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In International Conference on Machine
Learning, pages 9929-9939. PMLR, 2020. 4

https://github.com/SsnL/moco_align_uniform
https://github.com/SsnL/moco_align_uniform

	. Experiment Details for Reproducibility

