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1. Clarity on computational overhead:

Delving into the complexity analysis of our method we explore complexity of a relevant method in this context. The Table
below compares the complexity of ZS-SAKE [2] with ours. ZS-SAKE is indeed simpler to train, and faster at test-time. The
extra cost is however justifiable by (i) the ability to handle style changes in addition to novel categories, (ii) we do not dictate
word embedding (as per ZS-SAKE), but just a single sketch, and (iii) we surpass ZS-SAKE [2] by a rather significant 9.31%
margin (relative mAP@all).

Method Parameters Time per Forward Pass
ZS-SAKE [2] 27.6 mil. 25.6 ms
Ours 33.8 mil. 110.4 ms

2. Clarity on auxiliary loss used:

Without the auxiliary objective, test-time training is infeasible thus dropping model performance (Table 2, Type-I in main
paper). Analysing further (Type IV-VII), we found reconstructing stroke-level details optimally conditions the encoder to
a sketch, as it is penalised on stroke-level semantics, proving its superiority in aiding the primary objective. Furthermore,
learning which strokes are significant towards boosting the primary task (via n; in Type III) is advantageous, as some strokes
inherently hold more semantic meaning in a sketch than others.

3. Clarifying experiments:

Our work differs from [4] in our latent space preservation via meta-learning, and in our auxiliary task which is optimally
suited to sketches. Table below compares the performance of [, 5] adjusted for retrieval, against ours. To clarify, in both
Tables 1 and 2, our method uses test-set photo reconstruction. In Table 2, all methods involving test-time training and
auxiliary task have employed test-set photo adaptation (TPA) as well. Without it, accuracy dips slightly by 0.020 mAP@all
on average. Below table shows our method’s accuracy in that setting (Ours w/o TPA).

Sketchy (ext) TU Berlin (ext)
mAP@all P@200 mAP@all P@200
B-TENT [5] 0.483 0.574 0.405 0.521
B-SHOT [1] 0.497 0.578 0.425 0.538
Ours w/o TPA  0.561 0.620 0.495 0.642
Ours 0.575 0.624 0.507 0.648

Methods

*Interned with SketchX



4. Sensitivity of hyper-parameters:

The initial estimate for some hyper-parameters like margin value of triplet loss, or initial values of inner and outer learning
rates were inspired from related works [3] and optimised empirically thereafter. We have experimented by changing the ratio
ATri ¢ Arec from 7:3 to 1:1 which dipped performance to 0.510 (0.581) mAP@all (P@200) on Sketchy showing a slight
sensitivity on the ratio of learning objectives. We shall include such hyperparameter sensitivity details on acceptance. For
other ablation studies on sensitivity of the number of gradient steps, of both test-time training and meta-learning, or on
optimal feature dimension for primary and auxiliary tasks, please refer to Fig. 4 and Fig. 5 respectively, in the main paper.

5. Additional visualisations:

Following diagram shows sketches reconstructed via the decoder (lower) against input (upper).
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6. Limitations:
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Despite the effective paradigm of our proposed method, there might be some cases, where the model fails to retain its
learnt cross-modal knowledge of the source data. As evident from the 4" sample in Figure above, the sketch reconstructed
might indulge certain noisy strokes which infers that the test-time training will not always be optimal for very complex types
of sketches.
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