
A. Appendix

We provide a discussion of potential negative societal
impact and include further details and results. Video results
are available on the project website at srt-paper.github.io.

A.1. Potential Negative Societal Impact

Fakes. This paper proposes a method to synthesize novel
views of scenes observed from a small set of input views. As
in any image synthesis system, it could be used to produce
images that have misleading or fake content, particularly if
an adversary selected the input images. We plan to mitigate
this issue partially by deploying the algorithms only in secure
servers when running them on real world datasets, and we
will clearly mark all synthesized imagery as such to reduce
the chance of misinterpretation.

Privacy. This paper includes experiments run with a Street
View dataset containing images acquired in public areas of
real world outdoor scenes. As in any image dataset, these im-
ages could have information that negatively affects personal
privacy. To mitigate these potential impacts, we follow strict
privacy policies required by the owner of the data, Google,
which include rules for using the data in accordance with
regional laws, anonymizing the data to avoid identification
of people or license plates, and retaining the data in secure
storage (https://policies.google.com/privacy).

Fairness. Our Street View dataset contains images captured
by a car-mounted camera platform driving on public roads
in San Francisco. Long sequences of images are captured
systematically with fixed view directions and regular time
intervals as the car drives. There are biases in the dataset
based on which roads are driven in which city, which align
with demographic or economic factors. However, individual
images are not selected by a human photographer, which
might mitigate some types of bias common in other computer
vision datasets.

Energy consumption. The paper proposes a method to train
a transformer network architecture to produce a scene rep-
resentation and arbitrary novel images from a set of input
images. The training procedure requires a lot of compute cy-
cles, and thus has a negative impact on the environment due
to its energy consumption. However, in comparison to most
competing methods based on volumetric rendering methods,
the inference cost is smaller (by 6-7 orders of magnitude
per scene and 2-3 orders of magnitude per image). Thus,
our proposed system is the most efficient of its kind when
deployed at scale (our target use case) – where the system is
trained on millions of images and then run without further
fine-tuning to synthesize up to trillions of novel images.

A.2. Architecture, Training and Evaluation
Dataset Details

Neural 3D Mesh Renderer Dataset (NMR) [17]. This
dataset consists of ShapeNet [4] objects from the 13 largest
classes, each with 24 fixed views rendered at 64⇥64 pixels.
We use the SoftRas split [14], which contains 31 k training,
4 k validation and 9 k test objects. Following the protocol
in [38, 49], one randomly sampled image is provided as
input, and images are rendered for all other 23 views.
MultiShapeNet (MSN). We use 1 M scenes for training,
and 10 k for testing. To ensure that all test set scenes contain
novel objects, we split the full set of ShapeNet objects into a
train and test split, and sample objects for each from the cor-
responding split. Viewpoints are selected by independently
and uniformly sampling 10 cameras within a half-sphere
shell of radius 8-12 for each scene, with all cameras pointed
at the origin. All images are rendered at a resolution of
128⇥128. The task is to render novel views given 5 ran-
domly selected input images of a novel scene.
Street View. The resolution of this dataset is 176⇥128
pixels. During training, the task is to predict 5 randomly
sampled images from the other 5 input views. At test time,
we render views from novel viewpoints. To ensure that
the evaluation scenes are new to the model, we physically
separate them from the training scenes.

SRT Model Details

We use the same network architecture and hyper parameters
throughout all experiments (with the exception of the appear-
ance encoding module, see Sec. A.2). Our CNN consists
of 4 blocks, each with 2 convolutional layers. The first con-
volution in each block has stride 1, the second has stride 2.
We begin with 96 channels which we double with every
strided convolution, and map the final activations with a 1⇥1
convolution (i.e., a per-patch linear layer) to 768 channels.

Both encoder and decoder transformers are similar to
ViT-Base [6]: all attention layers have 12 heads, each with
64 channels, and the MLPs have 1 hidden layer with 1536
channels and GELU [13] activations. The final MLP for
the decoder also has a single hidden layer, but with 128
channels, with a final sigmoid operation for the RGB output.
For the positional encoding of ray origin and direction, we
use Lo = Ld = 15.

We train our model with the Adam optimizer [19] with
initial learning rate 1⇥ 10�4 that is smoothly decayed down
to 1.6⇥ 10�5 over 4 M training steps and a learning rate
warmup phase in the first 2.5 k steps. We train with a batch
size of 256 and for every data point, we randomly sample
8192 points uniformly across all target views for rendering
and the loss computation. We noticed that the model was
still not fully converged at 4 M training steps, and validation

https://srt-paper.github.io/


Target frame SRT V-SRT

Figure 8. Epipolar Images (EPI) – For a dolly camera motion,
the same horizontal line of pixels marked in green (left) is stacked
vertically from all video frames, producing an EPI. The slope of
each diagonal line in an EPI corresponds to the depth of that pixel
in the scene. V-SRT uses a volumetric parametrization of the scene
and no viewing directions. We can see that its EPI looks quite
similar to SRT’s, indicating that the latter’s scene representation is
geometrically and temporally stable, despite a lack of theoretical
consistency guarantees for our light field parametrization.

metrics often keep improving up to and beyond 10 M, the
maximum to which we trained the model (especially on more
challenging datasets), though qualitative improvements are
increasingly subtle as training progresses.

Baseline Details

LFN. We received the LFN [38] code through private com-
munications with the authors. The code was adapted to
read the MSN dataset. We trained LFN for 500 k steps on
the NMR dataset with batch size 128 and using the Adam
optimizer with learning rate 1⇥ 10�4. After training, the
weights were frozen, and only the latent codes were opti-
mized for 2 k epochs with batch size 64. For MSN, we
trained LFN using a batch size of 16 for 500 k steps as train-
ing converged much faster and to lower loss values than with
the default batch size of 128. For the camera pose noise ab-
lations, we trained for 350 k steps (those models converged
earlier) with batch size 16. After training, we performed
latent code optimization for 200 k steps using batch size 16.
PixelNeRF. We used the official implementation from the
authors [2]. PixelNerf [49] was trained for 1 M steps with
the configuration from the codebase used for all experiments
in the original paper. During training, each batch contains 4
scenes of 10 images each for the MSN dataset, and 128 rays
are sampled per scene for the loss. Training uses Adam with
learning rate 1⇥ 10�4. In consultation with the authors,
we applied a minor fix in the projection code, tweaking a
division operation to avoid NaNs in some experiments.

Appearance Encoding

As the Street View data contains variations in exposure and
white balance, we extend our model with an appearance en-
coder for these experiments. During training, we extract an

R
ef

er
en

ce
R

en
de

r

Figure 9. Appearance embeddings – In some scenes, white bal-
ance and exposure are not consistent among the input views, see the
shift in colors between the reference views in the top row. We add
a simple appearance encoder to SRT to handle these cases. Note
that the appearance embedding only changes the white balance of
the rendered images without changing the structure (bottom row).
Further, it generalizes across entirely different views of the scene
(e.g., leftmost column). The effect is similar to the appearance han-
dling in [23], however, we do not need an expensive optimization
procedure to get the appearance embedding of an image, it is a very
fast feed-forward pass, and we do not need hundreds to thousands
of images of the same scene to capture appearance variations.

appearance embedding from the respective target views and
concatenate it to the input of the final 2-layer MLP after the
decoder transformer, see Fig. 2. The appearance encoder
consists of 4 blocks of 2⇥2 mean pooling operations fol-
lowed by 1x1 convolutions with 32 channels, and a ReLU
activation. Finally, we take the mean over the spatial dimen-
sions and map the vector to 4 channels before passing it to
the decoder MLP. At test time, the appearance embedding of
one of the input images can be used. Fig. 9 shows the effect
of the appearance embedding on the output of the model.

Semantic Segmentation

We train the semantics decoder Dsem by minimizing the
cross-entropy between softmax class predictions and ground
truth class distributions p for each ray / pixel:

argmin
✓Dsem

�
X

s

Er⇠Igt
s,i
p(r) · log(Dsem(r)) (10)

The ground truth classes were generated by running a pre-
trained 2D semantic segmentation model on the training
views, and extracting one-hot predictions.

Benchmark Details

We measure wall-clock performance of all models on a single
NVIDIA V100. In Tab. 3, we measure three different settings.
For A), we measure the onboarding time of a novel scene,
i.e. for PixelNeRF and SRT, this is the execution time of the
encoder, while for LFN, it is the time to optimize the scene-
latent. Hence, LFN takes minutes while PixelNeRF and SRT
encode the scene in 5-10 ms. For B), once the scene has



Query Key Patches in Input Images

En
co

de
r

al
ll

ay
er

s
D

ec
od

er
la

ye
r1

D
ec

od
er

la
ye

r2

Figure 10. Attention visualization for UpSRT – The attention
patterns of UpSRT resemble the ones of SRT (Fig. 5). Notably, the
model attends into relevant parts of all inputs, showing that UpSRT
has learned to use unposed imagery even in complex scenes.

already been onboarded, we measure the rendering FPS in
a streaming / interactive setup, i.e. frame by frame, without
batching. Finally, C) measures a full application scenario
that combines scene encoding and video rendering. Here,
we measure the full time taken to onboard a new scene and
render a 100-frame video. Note that we allow batching in
this scenario, as we assume the camera render path is known,
hence the measured times are significantly lower than the
sum of scene encoding and single-image rendering times.

A.3. Experiments and Results
UpSRT Model Inspection

UpSRT works without input poses at test time – however,
the pose of the first camera is always known by definition,
as all target poses are given relative to its reference frame
(see Sec. 3). Note that this does not mean UpSRT needs
poses – target views must always be defined somehow, and
in this case, they are simply defined relative to an arbitrary
input view. Hence, the fact that UpSRT works and renders
meaningful images by itself does not prove yet that the model
is capable of using unposed imagery; the model might only
be using the first input camera and ignoring all other input
views. In the following, we show that this is not the case,
and that UpSRT indeed uses all input cameras.

First, we investigate the attention patterns for UpSRT in
Fig. 10. As the results show, UpSRT is using all input images
for reconstructing novel views of the scene, showing that
it is capable of finding similar structures purely based on
imagery, and make use of that information for more detailed
scene reconstructions. Note that in the encoder, patches
in other input images attend strongly specifically into the
reference camera, possibly to spread pose information to all
other input views. That could also explain why the decoder
does not attend strongly into the reference camera.

Second, we compare UpSRT trained and tested on 5 input
images with SRT trained and tested only on one input im-

age. If UpSRT was only trivially using the first (practically
posed) input image, the quality of these two models should
be similar. However, we see that SRT only achieves a PSNR
/ SSIM / LPIPS of 19.2 / 0.53 / 0.52 on MSN in this setup,
while UpSRT reaches much better values of 22.2 / 0.65 /
0.41, respectively.

Finally, we take a closer look at the first row in Fig. 4
and notice that the red car is not visible in the first input
image (leftmost column), but in other, unposed input views.
Despite this, UpSRT is correctly reconstructing the red car at
the correct 3D position, showing that the model has detected
the position of objects in unposed imagery and has correctly
integrated them into the scene representation. Fig. 14 shows
further qualitative results for UpSRT.

V-SRT Volumetric Rendering

We show results for V-SRT in Fig. 11. As can be seen, the
render quality is comparable to that of SRT (see Fig. 7), with
the addition that depth maps can now be acquired as well.
Similarly, Fig. 14 shows results on the MSN dataset.

Robustness Study

Fig. 13 visualizes the effect of camera noise in our robustness
studies, see Sec. 4.4. As can be seen, the amount of noise is
subtle, yet enough to severely affect reconstruction quality
of geometry-based methods as seen in Fig. 6.

Temporal Consistency

Fig. 8 shows EPI for a dolly motion on an MSN scene. The
results show that SRT learns a coherent 3D scene. Note
that this consistency also implies that depth maps could be
extracted from our model [34, 47, 45], see also [38].

Comparison to NeRF-based Methods

In contrast to SRT and the baselines we compare to in the
paper, NeRF needs costly per-scene optimization, and is
known to fail in the few-image setting. In Fig. 12, we com-
pare SRT with Mip-NeRF [3] (improved version of NeRF)
and DietNeRF [15] (specialized to handle few images), and
see that they both fail for this highly challenging dataset with
only 5 images.



Input Views Nearby V-SRT Predictions Far V-SRT Predictions

Figure 11. V-SRT results on Street View – V-SRT has similar quality to SRT (see Fig. 7), but is much slower at inference due to the
sampling procedure for volumetric rendering. However, it allows one to render depth maps, which look reasonable in most scenes. In the
center example, the depth of the car is inaccurate as a result of the lighting variation, note that e.g. the car changes color due to the metallic
surface (e.g., input views 2 vs. 3), and since we did not include the viewing direction (see Sec. 4.3), the model has learned to account for this
in the geometry instead.

Mip-NeRF DietNeRF SRT Target
12.7 / 0.274 12.1 / 0.252 20.5 / 0.699 PSNR / SSIM

Figure 12. Per-scene, NeRF-based optimization methods compared
to SRT on the Street View dataset. Both Mip-NeRF [3] and Diet-
NeRF [15] need costly per-scene optimization, and fail with only 5
input images.

Figure 13. Camera noise – Visualization of the effect of camera
noise for � = 0.1, see Sec. 4.4. Blue: original cameras, brown:
cameras with noise, red: scene bounding box containing all objects.



Input Views Target LFN [38] PN [49] SRT UpSRT 1-SRT V-SRT Depth

Figure 14. Qualitative results on MultiShapeNet – More results on the MSN dataset from LFN [38], PixelNeRF [49], and SRT including
variations with unposed inputs (UpSRT), only the leftmost input image (1-SRT), and volumetric rendering (V-SRT & depth).


	. Introduction
	. Related Work
	. Method
	. Training and Inference

	. Experimental Results
	. Datasets
	. Comparisons to Baselines
	. Ablation Studies
	. Robustness Study
	. Applications

	. Limitations
	. Conclusion
	. Acknowledgments
	. Appendix
	. Potential Negative Societal Impact
	. Architecture, Training and Evaluation
	. Experiments and Results


