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1. Network details
1.1. Architecture

We reuse the classification architecture described in Sec-
tion 3.1 of [2] as our backbone. The architecture comprises
of three equivariant convolution layers followed by a global
max-pooling layer, and the remaining layers specialize for
classification; we drop these last layers and specialize the
network for our tasks instead. The global max-pooling layer
of [2] proceeds by first interpreting each point-wise signal
as coefficients of spherical functions in the SH basis and
performing a discrete inverse spherical harmonics transform
to convert them into functions over a discrete sampling of
the sphere. For any direction, the resulting signal is then
spatially pooled over the shape, resulting in a single func-
tion over the sphere sampling (specifically, a single map
from the sphere sampling to R, where C' = 256 as we
have 256 channels). We then apply point-wise MLPs (with
ReLU activations) on this sphere map and convert it back
to TFN-like features via forward spherical harmonics trans-
form (SHT) [2].

Spherical Harmonic Coefficients: In order to predict the
coefficients F'(X) of the invariant embedding H(X), we
apply a [128, 64]-MLP whose last layer is linear and convert
to types ¢ € [0, 3] via SHT.

Rotation-Invariant Point Cloud: We obtain our 3D in-
variant point cloud X ¢ by applying a linear layer to H(X).
Rotation-Equivariant Frame: To predict F, we apply a
[64, 3]-MLP whose last layer has a linear activation. We
then extract type 1 features with SHT, giving us a collection
of 3 equivariant 3D vectors.

Segmentation: To predict the segmentation we apply a
point-wise [256, 128, 10]-MLP whose last layer is soft-max
to get the segmentation masks S described in Section 2.

1.2. Training Details

Cropping operator O: We introduce synthetic occlusion
in our training setting by slicing full shapes using the crop-
ping operator O. To perform a crop, we uniformly sample
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a direction v on the unit sphere and remove the top K/2
points in the shape that have the highest value of z”v for
x € X. Additionally, we train our model on the ShapeNet-
COCO dataset [3, 5] which has pre-determined occlusion
due to camera motion, as seen in Figure 2. In order to pre-
process this data for training, we aggregate the parts in the
canonical NOCS space of every sequence to obtain the full
shape and perform a nearest neighbor search in the NOCS
space to find correspondences between the full and partial
shape.

Hyper-parameters: During training, we use a batch size
of 16 in every step for all our models. We set an L' ker-
nel regularizer at every layer of the network with weight
0.1. We weigh the loss functions by their effect on reducing
the Canonical Shape 10ss L qn0n- The loss functions are
weighed as: Leanon (2), Lrest (1), Lortho (1), Lsep (0.8),
and Lgmod (1).

2. Unsupervised Co-segmentation
2.1. Predicting parts

We predict the part segments S € RX*¢ wherein C are
the number of parts. We use the rotation-invariant embed-
ding H*(X) with all the types 0 < ¢ < 3 to predict the
segmentation S. We define the following notation for nor-
malized parts A(X) and part centroids 0(X) similar to [0].:

S(X) := Softmax[MLP(H (X))]
_ SuX)
451X = 50 M

0;(X) := ZAZ-j(X)Xi,:

2.2. Loss functions

We use part segmentation to enforce semantic con-
sistency between full and partial shapes. We borrow
the localization 1oss (Liocatization) and equilibrium loss
(Lequitibrium) from [6] for the full shape to evenly spread



part segmentation across the shape. Additionally, we em-
ploy the following losses.

Part Distribution loss: We compute the two-way Cham-
fer distance (C'D) between the part centroids and the input
shape. In practice, this helps to distribute parts more evenly
across the shape.

Laist = CD (X, 0(X)) 2)

Part Restriction loss: The parts discovered by the network
for the partial shape should be congruent to the parts discov-
ered by the network for the full shape. We penalize the part
prediction for corresponding parts by minimizing the nega-
tive Cosine Similarity (C'S) for our capsule predictions.

2
‘Crest(pa'r‘t) = 7? Z CS(S(O(X))L? O(S(X))Zy)
=

3)
Part Directional loss: To avoid part centers of the visible
parts of a shape from deviating from the part centers of the
full shape, we use a soft loss to ensure that the directional
vector between part centers are consistent between the full
and partial shape. dir(f(X)) computes the vector directions
between every © C, centroid pairs for C' part centroids.

Lainee =~z 3 CS(din(0(0(X:))),di(O(6(X,)))
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3. Registration
Table 1. Registration — Distance in terms of root mean-square er-

ror (RMSE) and Chamfer distance between registered and ground-
truth points on the ShapeNet (core) dataset for full shapes only.

| RMSE| | Chamfer (CD)|
Method | Airplane Chair Multi | Airplane Chair Multi
PCA 0.616 0.695 0.715 0.050 0.097  0.054
Deep Closest Points [7] 0.318 0.160 0.131 - - -
Deep GMR [Y] 0.079 0.082  0.077 - - -
CaCa [6] 0.024 0.027  0.070 0.009 0.026  0.040
Compass [4] 0.361 0.369  0.487 0.061 0.079  0.051
Ours (F) 0.254 0.314  0.496 0.015 0.026  0.040
Ours (F + P) 0.201 0.280  0.404 0.014 0.023  0.033

We note in Table | that our method does not perform well
in this task as we predict a frame £ € O(3) which can have
reflection symmetries, we observe symmetries such as left-
right reflection for planes. Symmetries cause high RMSE
error because points are matched with their image under
symmetry which are often very distant. However, when us-
ing Chamfer Distance metric which is symmetry agnostic
our registration error decreases by an order of magnitude
achieving competitive results on this benchmark. We also
note that Ours(F+P) noticeably decreases RMSE compared
to Ours(F) as during training the frame consistency is en-
forced between the full shape and a randomly rotated partial
by the L, loss.

4. Ablations

We now provide detailed ablations to justify the follow-

ing key design choices: the effect of increasing amounts of
occlusion/partiality, and loss functions.
Degree of Occlusion/Partiality: We examine the ability of
our model to handle varying amounts of occlusion/partiality
for the car category in Table 2. Our occlusion function, O,
occludes shapes to only keep a fraction of the original shape
between 25% and 75% (i.e., 75% is more occluded than
25%). We observe that our method performs optimally over
all metrics when trained at 50% occlusion.

Test partiality ‘
\ 75% 50% 25%
Ground Truth Consistency (GC)|

Degree of partiality during training
[25%, 75%]

75% 0.0451 0.0438 0.1420 0.0681
50% 0.0375 0.0356 0.0504 0.0296
25% 0.0388 0.0301 0.0241 0.0299
[25%, 75%] 0.0438 0.0553 0.0894 0.0558
Instance-Level Consistency (IC)|

75% 0.0728 0.0719 0.1542 0.0797
50% 0.0452  0.0349 0.0526 0.0380
25% 0.0456 0.0333  0.0221 0.0334
[25%, 75%] 0.0719 0.0792 0.1049 0.0804
Category-Level Consistency (CC),

75% 0.0914 0.0895 0.1702 0.0966
50% 0.0652 0.0632 0.0731 0.0617
25% 0.0657 0.0608 0.0582 0.0606
[25%, 75%] 0.0895 0.0985 0.1216 0.0982
Average ‘ 0.0594 0.0580 0.0886 0.0610

Table 2. Degree of partiality - Partiality introduced during train-
ing (vertical) is evaluated on the canonicalization metrics with dif-
ferent fraction of partiality (horizontal). [25%, 75%] indicates
that degrees of partiality between 25% and 75% are randomly in-
troduced in the shapes. Our model trained with partiality 50%
performs better on average over all the canonicalization metrics.
[Note: 75% is more occluded than 25%. |

Loss Functions: We evaluate our F+P model on both full
and partial shapes trained with all losses, without the sep-
aration loss L., and without the restriction 108S Ly¢s:.
From Table 3, we observe that using restriction loss L,.cs:
helps in canonicalization of both full and partial shapes in
categories plane, table, and chair. However, separation
loss, Lsep, helps in plane, table but not in chair. Since,
both losses help in most of the categories, we utilize them
for training our final model.

Effect of introducing occlusion on full shapes: We eval-
uate the canonicalization of full shapes using our network



Category — | Plane | Table | Chair | Average

Metric| | Ours w/osep w/orest | Ours w/osep w/orest | Ours w/osep w/orest | Ours w/osep w/o rest
GC (full) 0.0286 0.0321 0.0303 0.0738  0.0641 0.0729 0.0509  0.0430 0.0532 0.0511 0.0464 0.0521
IC (full) 0.0144 0.0187 0.0169 0.0361 0.0612 0.0411 0.0235  0.0224 0.0245 0.0247  0.0341 0.0275
CC (full) 0.0679  0.0697 0.0683 | 0.1432 0.1510 0.1434 | 0.1145 0.1150 0.1143 | 0.1085 0.1119 0.1087
GC (partial) 0.0360  0.0389 0.0332 0.0662  0.0523 0.0683 0.0780  0.0681 0.0850 0.0601 0.0531 0.0622
IC (partial) 0.0265 0.0324 0.0479 | 0.0739 0.0791 0.0805 | 0.0622  0.0537 0.0841 0.0542  0.0551 0.0708
CC (partial) 0.0713  0.0733 0.0765 | 0.1579 0.1590 0.1598 | 0.1270  0.1250 0.1377 | 0.1187 0.1191 0.1247
Average ‘ 0.0408 0.0442 0.0455 ‘ 0.0912  0.0945 0.0943 ‘ 0.0760  0.0712 0.0831 ‘ 0.0696  0.0700 0.0743

Table 3. Ablation study to investigate the effect of different loss functions. ”w/o sep” and “w/o rest” denote training without separation

and without restriction loss, respectively.

trained on full and partial shapes. We observe that on aver-
age both our models Ours(F) and Ours(F+P) perform the
same on the canonicalization metrics for full shapes. For
a few categories such as lamp, car, chair, watercraft, in-
troducing partial shapes in the training improves its perfor-
mance on the canonicalization metrics. Whereas introduc-
ing occlusion during training degrades the performance for
category bench.

5. Applications
5.1. Co-Canonicalization

Commonly used datasets in 3D vision, such as
ShapeNet [ 1], are manually pre-canonicalized, making ex-
pansion of such datasets expensive. Since our method per-
forms better than others on canonicalization, we believe
that it can be used to extend these datasets by canonical-
izing corpora of in-the-wild shapes into a common pose.
Figure 1 shows the results of our model, trained on the
ShapeNet (core) dataset [1], being used to canonicalize
shapes from the (uncanonicalized) ModelNet40 dataset [&].
These shapes can now be merged into ShapeNet by apply-
ing a single category-wide rotation to match the obtained
canonical frame with the existing frame used by ShapeNet,
instead of the per-instance rotation that would otherwise be
required. Furthermore, these results qualitatively demon-
strate the ability of our method to generalize to datasets not
seen during training.

5.2. Depth Map Canonicalization

Since our method operates on partial shapes, we can
canonicalize objects in depth images. We use the depth
maps from the ShapeNetCOCO dataset, which have pre-
determined occlusion due to camera motion, and canoni-
calize partial point clouds. Specifically, we first take depth
maps and utilize them to generate groundtruth pointclouds.
We then trained and tested our model on it. Figure 2
present examples to demonstrate that our model is capable
of canonicalizing depth maps.

Figure 1. Co-canonicalizing object instances from ModelNet40
using our method trained on ShapeNet (core). (top) Canonicalized
full shapes. (bottom) Canonicalized partial shapes.

5.3. Annotation Transfer

Since a category-level canonical frame is consistent with
respect to the geometry and local shape of different ob-
ject instances of a category, annotations can be transferred
across instances that share the same canonical frame. Par-
ticularly, we demonstrate the transfer of sparse key-point
annotations in Figure 3. We randomly assign labels to a few
points of one point cloud in each category, which serves as
the source. We then use a remarkably simple transfer func-
tion to transfer these labels to points in each target point
cloud, making use of the predicted segmentation. To every
labeled point in the source point cloud, we obtain a direc-
tional vector originating from the centroid of the segment it
belongs to. Starting from the corresponding centroid in the
target point cloud, we move along this directional vector
and then pick the nearest point. While this scheme works



Figure 2. Canonicalizing point clouds obtained from depth maps
from the ShapeNetCOCO dataset.

well in our case, more nuanced transfer functions may be
required depending on the application.

Figure 3. Transferring key-point annotations from one shape to
another in the same category. We annotate only the first column of
shapes and transfer key-points to all the other columns

6. Proof of Rotation-Invariance Property of
our Embedding

Given rotation-equivariant embeddings F* and Y the
tensors H'(X) are rotation invariant as:

Hijp (RX) = (F;, ;(R.X), Y, (R.X))
= (D'(R)F, ;(X), D(R)Y.; (X))

= (Fy,. ;(X), Y5 (X)) = Hiji(X)

7. Commutative Property of Canonicalization
with the Cropping Operator

Canonicalization commutes with the cropping operator
O. For a (full) point cloud X and predicted canonicalizing
frame R(X), we prove the commutative property here, we
assume X is mean centered for simplification.

O[X] +R(X)O[X] = R(X)(O[X] + O[X])
= R(X)(O[X]) = O[R(X)X] = O[X"]

The above commutative property enables us to a predict a
rotation-equivariant translation 7 (O(X)) from the mean

centered partial shape O(X) only that aligns the partial

shape to its corresponding points in the full shape.

O[X] +R(OX]))O[X] =~ O[X] + R(OIX])T(O(X))
= 0[X°]

8. Discussion on Canonicalization Metrics

We complement the discussion of our canonicalization
metrics with a few remarks. Our 3 metrics Instance-Level
(IC), Category-Level (CC) and Ground Truth (GC) Con-
sistency measure three aspects of canonicalization. The
instance-level metric is a measure of the “variance” of the
canonical pose under rotation of the input. By definition
the canonical pose must be invariant to the input pose. The
GC metric provides a way of measuring canonicalization
consistency across the entire class of objects by measur-
ing how our canonicalization deviates from a ground truth
canonicalization up to a constant rotation. In the absence
of a ground truth alignment, we propose the CC metric
which compares canonicalization of different shapes within
the same class using Chamfer distance (as we don’t assume
pointwise correspondences between different shapes). The
CC metric relies on the assumption that aligned shapes of
the same category are similar to each other.

We observe in table (1) of our article that some methods
have high IC but low GC and vice versa (e.g. CaCa [6] (cab-
inet), Ours (F + P) speaker). This occurs as we canonicalize
based on geometric similarity instead of semantic aspects
of the object. The IC and CC metrics measure geometric



properties of the canonicalization while GC measures se-
mantic properties of the canonicalization according to man-
ually aligned shapes.

We build our metrics using the Chamfer distance as
it does not assume pointwise correspondences between
shapes, this allows measuring the canonicalization quality
of symmetric shapes where there may not be a single cor-
rect canonical orientation. However, we observe a perfor-
mance gap with our method when using distances based on
pointwise correspondences such as L? or root mean square
(RMSE) errors as seen in Section 3 of this appendix. We
believe our Chamfer distance based metrics are represen-
tative of the quality of canonicalization and are consistent
with our visual evaluation.

9. Discussion on PCA

PCA Over-Performance on the CC Metric: We note
that the competitiveness of PCA is limited to certain ex-
periments for full shapes and multi-category experiments
only. The CC metric compares canonicalized shapes of the
same category with possibly different geometry — note that
PCA even outperforms ground truth canonicalization for
this metric. Thus a method which is optimal for GC met-
ric cannot outperform PCA in CC.

PCA Under-Performance on the IC Metric: The most
likely reason why PCA underperforms on the IC metric
is because of frame ambiguity. The PCA principal direc-
tions are defined up to symmetries of the covariance matrix
eigenspaces — the shape does not necessarily share these
symmetries. For instance, when eigenvalues are distinct,
eigenvectors are defined up to sign, causing random flips
over principal directions: e.g., an airplane can be flipped
on its back. When two or more eigenvalues are identical,
eigenvectors are defined up to rotation, e.g., in chairs, the
major component can be from the left leg to the top right
corner or bottom right leg to top left corner. Thus, PCA
canonicalization of rotated copies of a given shape may not
be equal due to symmetries of the shape, resulting in higher
Chamfer/IC error.

10. Qualitative Results

We now present more qualitative results in Figure 4, 5
to demonstrate the effectiveness of our method.



Figure 4. Parking lot for full shape canonicalization for multi-category(fop), plane (mmiddle) and chair (bottom).



Figure 5. Parking lot for partial shape canonicalization for multi-category(top), plane (middle) and chair (bottom). Note: missing parts
only shown for visualization.
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