
Supplementary Material for NLX-GPT: A Model for Natural Language
Explanations in Vision and Vision-Language Tasks

1. Implementation Details
In this section, we provide implementation details for

pretraining, concept detection and finetuning. Please note
that for all three stages, the vision backbone is frozen and
not fine-tuned at any time.

1.1. Pretraining

We choose 4 publicly available image-caption datasets
for pre-training: MSCOCO [8], Visual Genome Region De-
scriptions [7], Flickr30K [12] and Image-Paragraph Stan-
ford dataset [6]. The region descriptions of Visual Genome
are of large-scale (∼5M). However, they are short com-
pared to COCO and Flickr30K, and each region descrip-
tion is associated to a small part of the image. We therefore
combine the per-image region descriptions to form a para-
graph, which acts as the caption associated to the image.
The maximum length of the caption is set to 70. There are
also other image-caption datasets that can be used for pre-
training, such as Conceptual Captions of ∼3M pairs [14] as
well as SBU of ∼1M pairs [10]. We leave these to future
works since the results with the 4 datasets we mentioned al-
ready give satisfactory results when fine-tuned on the Nat-
ural Language Explanations (NLE) downstream task. We
initialize the model with the Distilled GPT-2 weights1. The
model is trained with the ADAM optimizer [5] with a batch
size of 768 and a learning rate of 1e-4 which is linearly de-
cayed to 0 over the total number of training steps. We eval-
uate the pre-trained model performance on the ”Karpathy”
test split [3] of COCO Captions [8].

1.2. Concept Detection

Let H,W,P, Y be the height, width, patch size and total
number of patches of the image, respectively. In order to
predict image concepts, the output representation of the vi-
sion backbone for all image patches is utilized. Let the out-
put of the vision backbone be X ∈ RY×d where d is the out-
put dimension. In the case of ViT, we do not utilize the CLS
reduced representation since it is mainly optimized for other
objectives such as image classification or contrastive learn-
ing, and may not be optimal for concept learning which re-

1https://github.com/huggingface/transformers

quires a much broader view of all the image patches. There-
fore, we learn an attention reduced representation of all the
Y image patches. We first feed X into 2 linear layers with a
ReLU activation function in-between, followed by a resid-
ual [2] and layer normalization layer [1] to get an output
V ∈ RY×dk . We utilize an attention-summary layer imple-

mented as s =
∑Y

i=1 αixi where αi =
exp(wT

x vi)∑Y
j=1 exp(wT

x vj)
in

order to reduce X into to a single feature vector s, where
w ∈ Rdk×1 are learnable weights. s is then fed into a
classification layer over all the concepts. We train the con-
cept detection head on the Visual Genome 2.8M attributes
dataset [7] with a batch size of 256 using the ADAM op-
timizer [5] with a learning rate of 2e-3 which is decayed
by a factor of 0.8 every 3 epochs. We use dropout with a
keeping probability of 0.9. In order to measure the accu-
racy, we take the top-K predicted concepts and check how
many of them appear in the ground-truth concepts. For each
sample in the test set, we count the number of elements in
the set PR ∩GT , where PR indicates the top-K predicted
concepts and GT are all the ground-truth concepts for the
tested sample. We measure the acuracy at K = 5, 10 and
15. Our resulting accuracy scores are 83.0, 73.61 and 65.99,
respectively.

1.3. Finetuning

We finetune our pretrained model on 4 NLE datasets:
VQA-X, ACT-X, e-SNLI-VE and VCR (explained in the
next section). The input sequence consists of tokens of the
(question, answer, explanation) and each token is then fed
to an embedding layer to get a representation of the word. In
order allow the model to distinguish between the question,
answer and explanation, we add the embeddings of the seg-
ment ID <ques>, <ans> and <exp> to all question, an-
swer and explanation token embeddings, respectively. We
also add a continuous positional embedding for the com-
plete sequence starting from the question up until the expla-
nation. We use the ADAM optimizer [5] with a learning rate
of 1e-5 which is linearly decayed to 0 over the total num-
ber of training steps. For models which are finetuned from
the pretrained image captioning model (models for VQA-X
and ACT-X), we use a batch size of 32. For other models,
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Table 1. Filtered Scores on VCR dataset. B, M, R-L, C, S, BS are short for BLEU, METEOR, ROUGE-L, CIDER, SPICE and BERT
Score, respectively. Unfiltered Results for B1, B4, M, R-L, C, S, BERTScore are: 18.5, 3.3, 9.0, 19.9, 24.2, 12.4, 77.1

B-1 B-2 B-3 B-4 M R-L C S BS
PJ-X [11] 21.8 11.0 5.9 3.4 16.4 20.5 19.0 4.5 78.4
FME [15] 23.0 12.5 7.2 4.4 17.3 22.7 27.7 24.2 79.4
RVT [9] 18.0 10.2 6.0 3.8 11.2 21.9 30.1 11.7 78.9

QA-only [4] 18.0 10.2 6.0 3.8 11.2 22.0 30.6 11.6 78.9
e-UG [4] 20.7 11.6 6.9 4.3 11.8 22.5 32.7 12.6 79.0

NLX-GPT 24.7 15.0 9.6 6.6 12.2 26.4 46.9 18.8 80.3

we initialize them from the Distilled GPT-2 weights and use
a batch size of 64. At inference, we use greedy decoding.
The maximum sequence length for VQA-X, ACT-X and e-
SNLI-VE is set to 40, 30, and 40, respectively. For e-SNLI-
VE, the maximum number of concepts fed at the input is
15.

2. VCR Setup and Experiments

Visual Commensense Reasoning (VCR) [16] is a new
task introduced in which a model is given an image, ques-
tion and a list of objects (regional features and bounding
boxes) and is required to select one answer from a set of
multiple-choice answers (Q → A). After that, it is re-
quired to select a rationale (explanation) of why the answer
it has selected is correct, from a set of multiple-choice ra-
tionales (QA → R). The dataset consists of 290K sam-
ples of questions, answers and rationales. For the purpose
of the NLE task, we follow previous NLE models [4, 9]
and reformulate the explanation as a text generation task
rather than a multiple-choice answering task. The train,
validation and test splits for NLE are 191.6k, 21.3k, and
26.5k, respectively. Different from previous NLE vision-
language tasks (VQA-X and e-SNLI-VE) where the in-
put is an image and a question/hypothesis, VCR requires
an additional input (detected objects) which can be repre-
sented by the regional features. Given the region proposal
coordinates, NLE models implementing the re-formulated
VCR [4, 9] first extract these regional features by perform-
ing Region-of-Interest (ROI) pooling or ROI Align on the
output of a Faster R-CNN network [13]. Let a bounding
box for a specific object be represented by x1, y1, x2, y2
which indicates the top-left and bottom-right coordinates.
One approach we could take to represent objects for our
NLX-GPT is to also perform ROI pooling on the grid-
based vision backbone output. In the case of the vision
transformer, we can reshape the output of shape Y × D
to H ′ × W ′ × D, where H ′ = H/P and W ′ = W/P
and D is the output dimension. After that, we can per-
form ROI pooling on that reshaped output using the given
bounding box coordinates. However, we take a simpler ap-
proach. We first represent each bounding box with 8 val-

ues: (x1

W , y1

H , x2

W , y2

H , x1+x2

2W , y1+y2

2H , x2−x1

W , y2−y1

H ), which
are then projected to a high-dimensional representation
equal to the dimension of the word and positional embed-
dings, in order to represent the object positional informa-
tion. Since the question, answer or explanation may refer
to specific detected objects in the image (e.g., what are per-
son1 and person3 doing?, it becomes necessary to encode
these objects along with their respective reference number.
We therefore input to the Distilled GPT-2 tokens which con-
sist of the objects, question, answer and explanation (as a
single sequence). We embed these input tokens with a token
embedding layer. We also embed the object reference num-
ber (ORN) with the same token embedding layer. We use
<noj> (representing ”no object”) to represent the ORN for
the question, answer and explanation tokens. Finally, we
add the object positional information, token embeddings,
ORN embeddings, positional embedding and segment em-
beddings together to form the Distilled GPT-2 input. The
maximum number of objects is set to 20, and the maximum
length of the (question, answer, explanation) sequence is
set to 60. Figure 1 illustrates the complete process. For
the purpose of our NLX-GPT, we also formulate the answer
prediction as a text generation task. Unlike previous tasks
discussed in the main paper (VQA-X, ACT-X and e-SNLI-
VE) where the answer consists of one or a maximum of
two words, the answer in VCR is usually much longer. It
is therefore difficult to expect an identical correspondence
between the generated and ground-truth answer. For ex-
ample, the model may generate an answer: no, this person
does not live in this house while the ground-truth answer
is: no, this person is a visitor. In fact, this justifies why
the authors of [16] formulated the VCR task as a multiple-
choice task. At evaluation, only the test samples for which
the predicted answer is correct are allowed to proceed to
the second stage of providing the rationale (QA → R), and
thus test samples with wrong predicted answers should be
filtered. To overcome the difficulty, we measure the con-
text and semantic meaning of our predicted answers through
the BERTScore [17] metric. We thus consider a predicted
answer to be correct if its BERTScore referenced with its
corresponding ground-truth is higher than or equal to 0.92.
Table 1 shows our filtered scores and Figure 2 shows quali-



Figure 1. Our proposd NLX-GPT for the VCR Task. The word embedding, object reference number embedding as well as the segment ID
embeddings all share the same layer (orange). The red, green and blue squares represent the projections of the bounding box coordinates
for person 1,2 and 3, respectively.

tative examples.

3. Explain-Predict Implementation Details

The explain-predict evaluation framework is trained on
the ground-truth explanations. That is, we feed the question
and ground-truth explanation to the Distilled-BERT model
during training. We initilze the model with the Distilled-
BERT weights2. The model is trained with the ADAM op-
timizer with a batch size of 16 and a learning rate of 2e-5
which is linearly decayed to 0 over the total number of train-
ing steps. For VQA-X and ACT-X, we train a multi-label
classifier with soft targets over the ground-truth answers us-
ing binary cross-entropy loss. For e-SNLI-VE, we train a
a classifier with the hard targets over the ground-truth an-
swers using cross-entropy loss. We measure the accuracy
as the evaluation criteria. It is important to note that for
VQA-X, we find a total of 37 test samples for which their
answers are never seen in the training set. For other NLE
models [4,11,15], that is not a problem since they employ a
pretrained VQA model (trained on the full VQAv2 dataset).
However, our NLX-GPT is trained from scratch and only on
the VQA-X dataset (which is much smaller than VQAv2).
We therefore exclude these 37 samples from the explain-
predict accuracy calculation.

2https://github.com/huggingface/transformers

4. More Qualitative Examples
We include more qualitative examples from VQA-X,

ACT-X and e-SNLI-VE in Figures 3, 4, and 5. Figure 6
depicts the retrieval-based attack evaluation results visually
for two test samples from the ACT-X dataset when K = 5.
As shown, very similar images have a low intra-distance,
and thus our model has a low susceptibility to correlations
and bias in the dataset.

5. Human Evaluation Process
For VQA-X and e-SNLI-VE, the human evaluation pro-

cess is identical to [4]. We randomly select 300 test sam-
ples with correctly predicted answers. The evaluation is
performed by 3 different annotaters and the results are then
averaged. The annotaters mainly have to select one out of 4
choices (yes, weak yes, weak no, and no) as a response for
whether the explanation justifies the answer. The 4 scores
are numerically mapped to 1, 2/3 , 1/3 , and 0, respectively.
The numerical scores are then averaged among all test sam-
ples to get a final score. For ACT-X, we follow the main
procedure introduced in the paper [11]. 300 test samples
with correctly predicted answers are randomly chosen, and
a human annotater is asked to determine whether a gener-
ated explanation is superior to, inferior to, or equal to the
ground truth explanation. The percentage of the generated
explanations which are equal to or superior to the ground
truth explanations are reported.



Figure 2. Qualitative examples from our model on the VCR task



Figure 3. More qualitative examples from our model on the VQA-X task

Figure 4. More qualitative examples from our model on the ACT-X task

6. Failure Cases

We include failure cases of our model in Figure 7. We re-
alize that in some cases, the answer is predicted wrong but
the explanation is correct or vice-versa. For cases where
the explanation is wrong but the answer is correct, we hy-
pothesize the problem to be in the equal weighing of all
words to be generated (including the answer), which treats
the answer as all other words. To alleviate this problem,
we tried several solutions. One solution is to assign more
weight to any word in the answer vocabulary during the loss
calculation, so that wrong wrongly predicted answers incur
more loss. Unfortunately, none of the solutions we tried
gave positive effects. For e-SNLI-VE, we observe two ma-
jor failure cases. Firstly, the model justifies the prediction
by simply repeating the hypothesis. Secondly, the model
is sometimes biased towards the tone the human explainer
justifies the prediction, as many samples in the dataset are
of the form: (.....is the same as.....) or (just because.....does
not mean.....).

7. Removing a VL-model is advantageous

In the paper we give two intuitions behind this: In short,
1) it eliminates the high memory requirements of the VL-
model and reduces the inference time. 2) it eliminates the

independence and dissociation of the VL-model and expla-
nation model, in the sense that the explanation is intrin-
sic, internally affiliated and connected to the reasoning pro-
cess made to predict the answer. There are other reasons
as well: Training the task and explanation jointly in one
model allows us to have faithful explanations, which is what
FME [15] discusses, however in a much simpler and model-
intrinsic way, and without any external operations. Also,
if we had a separate VL-model and a separate explanation
model, finetuning the VL-model along with the explanation
model is advantageous, but a difficult step (in most works,
this step is avoided) due to the extra memory requirements
to fine-tune the VL-model as well as the careful and correct
consideration of hyperparameters and optimization proce-
dure required. In our work, this is completely avoided since
both are jointly trained in one model.



Figure 5. More qualitative examples from our model on the e-SNLI-VE task

Figure 6. Retrieval-based attack evaluation results visually for two test samples from the ACT-X dataset
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