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1. Datasets
We perform experiments using different proxy datasets

similar to prior works [1, 2] to evaluate the effectiveness of
our method DFMS-HL. This section contains a description
of the different datasets that we used to evaluate our attack
with CIFAR-10 as the true dataset.

• 40-unrelated classes from CIFAR-100 [1]: This con-
sists of training data from CIFAR-100 belonging to
non-overlapping classes with respect to CIFAR-10.
The classes from the following categories are included:
food containers, household electric devices, household
furniture, large man-made outdoor things, large natural
outdoor scenes, flowers, fruits and vegetables, trees.

• 10 random classes of CIFAR-100: From the above
40 unrelated classes, we choose 10 classes randomly to
demonstrate this setting. The classes used are : plate,
rose, castle, keyboard, house, forest, road, television,
bottle and wardrobe.

• Synthetic Dataset: We construct synthetic images
which are far from the manifold of the training data
distribution to simulate this setting. The images con-
tain multiple overlapping shapes on top of a planar
background. The creation of synthetic images is de-
scribed in Sec. 1.1.

1.1. Creation of Synthetic Dataset

The algorithm to create a synthetic dataset is presented
in Algorithm 1. At first, randomly sampled shapes (trian-
gle, rectangle, circle or ellipse) are generated at random
locations in the image with a randomly sampled colour.
The shapes are generated using python skimage module1.
A total of 50K images are generated. We generate two
kinds of images. The first variant contains large overlapping
shapes with number of shapes in the image (num shapes) as
50 and the (min size, max size) of each shape as (20,50).
The initial image generated is of size (100 x 100) which

1https://scikit- image.org/docs/stable/auto_
examples/edges/plot_random_shapes.html
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Figure 1. Types of synthetic images used. An equal share of
large(right) and small(left) overlapping shapes on planar back-
ground used to train the clone model.

Algorithm 1 Algorithm for creating synthetic data

Require: Number of images to be generated NP ,
num shapes, max size, min size
while NP ̸= 0 do

Generates shapes on an image of size (100 x 100),
with parameters: num shapes, min size, max size

Assign a random RGB colour to background pixels
Perform blurring on the image using a 4 x 4 filter
Resize image to (32 x 32)
NP ← NP − 1

end while

is scaled down to (32 x 32). The other variant contains
textured images with (min size, max size) as (5,10) and
num shapes=50 to get small overlapping shapes on top
of a planar background. A random colour is sampled
and assigned to the background pixels. These images are
then used to steal an ML model trained on CIFAR-10 and
CIFAR-100. The generated images are shown in Fig. 1. We
share our dataset here2.

2https : / / drive . google . com / drive / folders /
1CCMCYVRnvqZig9dYUYO_BupI8tImGZ2x
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2. Insights on Query Budget
Chandrasekaran et al. [3] formulated the model extrac-

tion task as a query synthesis algorithm where an adversary
A can ask for labels of the data x which could be completely
unrelated to the training data distribution. They show that,
given a maximum query budget of qA(ϵ, δ) and a victim
model V trained with a specific hypothesis f∗ ∈ F , there
exists an adversary which implements an ϵ-extraction attack
with confidence 1− δ. Adversary A trains a clone model C
with hypothesis f̂ such that the following holds true.

Pr[A trains f̂and Err(f̂) ≤ ϵ] ≥ 1− δ (1)

where Err(f̂) = ||w∗−w||2, w and ŵ being the parameters
of f̂ and f∗, respectively. This shows that an adversary can
implement a model stealing algorithm in a Query Synthesis
scenario using active learning. Further, the authors [3] show
that even when a victim employs a randomized procedure
for returning labels such that the upper bound on the proba-
bility of returning wrong labels ρD(f∗) < 1

2 , an adversary
can implement an ϵ-extraction attack with confidence 1−2δ
within the following query bound:

q =
8

(1− 2ρD(f∗))2
q(ϵ, δ)ln

q(ϵ, δ)

δ
(2)

3. Experimental Details
For the evaluation of DFMS-HL, we consider victim

models trained on two datasets, CIFAR-10 and CIFAR-100.
For each dataset, a victim model is trained upto a compa-
rable accuracy of the teacher model used in prior works
[1,2,9]. The initial Clone model is trained with an SGD op-
timizer of momentum 0.9, learning rate of 0.1 and weight
decay of 5 × 10−4. We train the initial clone model for
200 epochs. The learning rate is reduced to 0.01 once the
alternate training of clone and generator starts. After this,
the clone is trained alternately till the query budget is ex-
hausted. We use a cosine annealing scheduler to decay the
learning rate across epochs. For the generator, a DCGAN
architecture is trained with an Adam Optimizer and a learn-
ing rate of 2 × 104 with (β1, β2) as (0.5, 0.999). We use
NVIDIA GeForce GTX 1080 Ti and GeForce RTX 3090
to train our models. Our code takes a total training time
of approximately 5 hours for CIFAR-10 and 10 hours for
CIFAR-100 datasets on NVIDIA GeForce RTX 3090.

4. Ablation Experiments
4.1. Impact of Synthetic Data

We tried two variants of the synthetic dataset. The first
variant, “Large overlapping shapes” contains multiple over-
lapping shapes on a planar background. The second vari-
ant “Small overlapping shapes” contains multiple shapes of

Figure 2. Distribution of classes for grey vs colour images:
The grey synthetic images are more uniformly distributed across
CIFAR-10 classes as compared to coloured images.

Table 1. Impact of Synthetic Data: Clone Model accuracy
with different kinds of synthetic data images used, obtained on
a ResNet-18 victim model of accuracy 93.65%, with ResNet-18
as the clone architecture.

Type of Synthetic Data Clone Accuracy

Large overlapping shapes 80.34
Small overlaping shapes 56.30
Large + Small Combined 85.92

smaller size in an image. Each variant is shown in Fig 1. We
report results obtained by using each of these datasets indi-
vidually and both combined in Table-1. In this experiment,
we use grey scale images for training. After combining the
two datasets, we obtain a competent accuracy of 85.92%.

We use grey-scale and coloured images individually
from the synthetic dataset and observe its impact on the
clone model accuracy with an AlexNet victim network. We
find that the grey images are well-distributed across mul-
tiple classes as shown in Fig. 2. This makes grey im-
ages a better choice for initialization. In our method, we
train a clone model with a mix of images from the proxy
data and the generator to obtain a good initialisation. From
our experiments, we observe that the initial clone model
trained with grey-scale synthetic data achieves an accuracy
of 44.57% and the one trained with coloured images has
an accuracy of 37.31%. This shows that grey-scale images
lead to a better initialization for the clone model. Hence,
we reported the final results of our method using grey-scale
synthetic images. We also report the results of using the
grey-scale and colour images individually for training in Ta-
ble 2 and observe that the final clone accuracy in both cases
are comparable.



Table 2. Impact of Synthetic Data: Comparison for grey vs
coloured images used as proxy data, with AlexNet as the victim
model of accuracy 80.18% , trained on CIFAR-10, and AlexNet-
half as the clone model.

Type of Synthetic Data Clone Accuracy

Grey synthetic images 67.03
Coloured synthetic images 65.84

Table 3. Impact of class-diversity loss coefficient λdiv: Perfor-
mance (%) of the clone model on CIFAR-10 dataset trained us-
ing 10 random classes of CIFAR-100 as proxy, across variation in
λdiv . The architecture of victim model is Alexnet and architec-
ture of clone model is AlexNet-half. The proposed method is not
sensitive to minor variations in λdiv .

Diversity Loss Coefficient Clone Accuracy

100 69.29
200 69.59
300 69.42
500 69.66
700 69.54

1000 69.13

4.2. Hyperparameter tuning

The diversity loss plays a crucial role in ensuring that
the distribution of images from the generator is class-
balanced. The loss formulation of the generator with the
class-diversity loss is shown below:

LG = Ladv,fake + λdiv · Lclass div (3)

We show the impact of varying the class-diversity loss coef-
ficient λdiv in Table 3. The true dataset is CIFAR-10 and the
proxy dataset is 10 random classes from CIFAR-100. We
use AlexNet as the victim architecture and train an AlexNet-
half as the clone model for 500 epochs. We observe that as
we increase the diversity loss coefficient, the clone model
accuracy increases and reaches the maximum accuracy of
69.66% at λdiv=500. We note that the proposed method is
not sensitive to minor variations in the hyperparameter λdiv .

4.3. Impact of Clone architecture

In a practical scenario of Model Stealing, the architec-
ture of the victim model is unknown to the attacker. Hence,
we aim to stage a successful attack in a completely black-
box condition. To evaluate the effectiveness of the attack
in different scenarios, we perform an ablation experiment
to see if the choice of the clone model architecture impacts
the success of the attack. The clone model achieves a high
accuracy of 83.37% using 10 random classes of CIFAR-
100 when the same ResNet-18 architecture is used for both
the victim and the clone. However, using a deeper CNN

Table 4. Impact of clone architecture on clone accuracy: Clone
Accuracy improves with a deeper CNN network

Clone Model Architecture Clone Accuracy

ResNet-18 83.37
AlexNet 79.37
AlexNet half 62.64
VGG-11 74.59
VGG-19 78.85
GoogleNet 84.50

Table 5. Impact of L1 loss formulation on DFMS-SL (Soft-
Label Setting): Clone Model accuracy increases by 3% after us-
ing L1-loss as compared to standard KL-divergence loss. Syn-
thetic data is used as proxy for a ResNet-34 victim model trained
on CIFAR-10 and ResNet-18 used as Clone model.

Method Teacher Acc Synthetic

DFME 95.5 88.10
DFMS-SL(L1 loss) 95.5 91.24

DFMS-SL(KL-div loss) 95.5 88.40

Table 6. SVHN as Proxy Data ablation: DFMS-HL achieves
an accuracy of 84.83% using SVHN as Proxy data for a ResNet-
34 victim model trained on CIFAR-10. ResNet-18 used as Clone
architecture.

Method Synthetic CIFAR-100 (40C) CIFAR-100 (10C) SVHN

DFME 88.10 88.10 88.10 88.10
DFMS-HL (Ours) 84.51 92.06 85.53 84.83

model such as GoogleNet gives a boost to the clone ac-
curacy as shown in Table 4. We get lower clone accuracy
for shallower networks such as AlexNet-half and VGG-11.
Hence, we observe that it is beneficial for an adversary to
use a deeper CNN architecture for capturing complex fea-
tures from the victim model using proxy data.

4.4. Impact of Discriminator

The discriminator is an essential component of our ap-
proach. Across training epochs, the discriminator learns to
differentiate between proxy data and fake images produced
by the generator. We conduct an ablation experiment by dis-
abling the discriminator updates. We use CIFAR-10 as the
true dataset and synthetic data as the proxy dataset for this
experiment. For Alexnet as victim model and AlexNet-Half
as clone model, DFMS-HL attains an accuracy of 67.03%.
After disabling the discriminator, the clone accuracy drops
to 57.06% and the images look degenerate as shown in Fig.
3. Hence, the discriminator also plays a crucial role in main-
taining the distribution of images.
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Figure 3. Output of DFMS-HL after disabling the discriminator. The images converge to degenerate cases after few epochs of training.
Synthetic data is used as proxy data with an AlexNet victim model trained on CIFAR-10 and clone model as AlexNet-half.

CIFAR-100 10 random classes CIFAR-100 40 unrelated classes Synthetic dataset

Figure 4. DFMS-HL generator images. The images generated by DFMS-HL generator for CIFAR-100 10 random classes, 40 unrelated
classes and synthetic data as proxy for an AlexNet victim model of accuracy 80.18% trained on CIFAR-10 and clone model as AlexNet-
half.

4.5. Impact of L1 loss in DFMS-SL

Prior works on Knowledge Distillation [4–7] train a stu-
dent model using a KL-divergence loss between the student
and teacher predictions. Let Vi(x) and Ci(x) be the output
of class i (out of K classes) of the victim and clone models
respectively. The KL divergence loss is written as follows,

LKL =

K∑
i=0

Vi(x)log
[
Vi(x)
Ci(x)

]
(4)

The DFME approach [8] used an L1 loss formulation
where they consider the L1 difference between the logits of
the clone and the victim model. The logits are estimated by
first taking log, then subtracting the mean of the predictions
from it. The loss formulation is written as follows,

Ll1 =

K∑
i=0

| V logits
i (x)− Clogitsi (x) | (5)

where,

V logits
i (x) = logVi(x)−

1

K

K∑
j=1

logVj(x) (6)

We evaluate our approach in the soft-label setting with
the two loss functions of L1 loss and KL-divergence loss as
shown in Table 5. We observe an improvement in the clone
accuracy using synthetic data by 3% by using L1 loss for
distillation.

4.6. Using unrelated data as the Proxy Dataset

The amount of relatedness between the proxy data and
true data is an important factor that influences the suc-
cess of model stealing. We perform an ablation study us-
ing SVHN as the proxy dataset to steal a model originally
trained on CIFAR-10. Since SVHN is a completely un-
related to CIFAR-10, it is indeed a difficult setting. Our
method DFMS-HL attains a clone accuracy of 84.83% in
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Figure 5. DFMS-HL generator images. The images generated by DFMS-HL generator using synthetic colour dataset as proxy for an
AlexNet victim model of accuracy 80.18% trained on CIFAR-10 and clone model as AlexNet-half.
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Figure 6. DFMS-HL generator images. The images generated by DFMS-HL generator using grey-scale synthetic images as proxy for an
AlexNet victim model of accuracy 80.18% trained on CIFAR-10 and clone model as AlexNet-half.

this setting. This shows our attack is strong enough to work
across a wide range of unrelated proxy datasets.

5. GAN generated Images
The images generated from the DFMS-HL GAN are

shown in Fig. 4, 5 and 6. Initially, the generator starts gen-
erating images which closely resemble the proxy data. In
the synthetic data experiments (Fig.5 and 6), as the train-
ing progresses, we observe that the shapes start merging
with each other and start looking more continuous in na-
ture. This makes the image look close to real images which
have an object in front of a background. This shows that
the generator starts capturing properties of the true train-
ing data distribution, as they look more intuitive than the
original synthetic images. This helps the clone model learn
intrinsic properties of the victim’s training data.

6. Limitations and Future Directions
One of the crucial factors of a successful model stealing

attack is its query budget. Our approach has reduced the
number of queries required to 8 million, which is ∼ 500×
lesser than the query budget used by past methods of model
stealing and knowledge distillation. We believe that reduc-
ing the query budget further would be an interesting area for
future research. Another limiting factor for an adversary is
the lack of relevant training data. Our approach addresses

this limitation to quite an extent, as we showcase promising
results in a limited data scenario by just using synthetic im-
ages. We believe that our approach would pave the way to
address these limitations and develop stronger attacks and
defenses in the area of hard-label model stealing.
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