
Appendix

Organization of Appendix. In this appendix, we first summarize the major notations used in the paper in Table 3 of
Appendix A. We then provide the detailed proof of Theorem 1 in Appendix B. Next, we provide additional experimental
results in Appendix C. Finally, the link to the source code is provided in Appendix D.

A. Summary of Notations
Table 3 summarizes all the major symbols along with their descriptions.

Table 3. Symbols with Descriptions

Notation Description
Bpos Positive bag (video)
Bneg Negative bag (video)
n Number of segments in each bag

x+
i Segment in a positive bag

x+
[i] ith largest prediction segment in a positive bag

x−
j Segment in a negative bag
M Feature dimension of each video segment
w Network parameters
b Network bias
k Number of segments considered in the top-k formulation
η Learning rate
C+ Set of instances from positive bag involve in model training
G0 Base distribution in DP
γ Concentration parameter for the distribution G0

βk Weight associated with the kth atom
ϕk Atom k drawn from the distribution H

Gj Transition probability distribution of jth state
π̂jl Stick breaking weight associated with lth atom in jth group
α Concentration parameter for π̂j

ϕjl lth atom corresponding jth group
βk Stick breaking weight corresponding to atom ϕk

γ Concentration parameter for βk

ρ Parameter defining the self transitioning
zi Scene assignment for the ith segment in a video
si Mixture component assignment for the ith segment in a video
N Multivariate Gaussian distribution
µk,t Mean of the kth state, tth mixture component
Σk,t Covariance of kth state, tth mixture component
Si,j Pairwise similarity between ith and jth segments
F (C) Submodular set function
f∗
s Maximum output score among segments assigned to the same cluster
i∗s Index of the representative segment
Ĉ+ Representative set constructed using the greedy algorithm
ϵ Threshold to exclude segments with low prediction score from the representative set
κ Upper bound of number of representative segments

B. Proof of Theorem 1
In this section, we provide the detailed proof of Theorem 1. We first show that the representative set based MIL loss

given by (14) is equivalent to the submodularity diversified MIL loss given by Equation (10) with a specific λ to balance the
MIL loss and the diversity of the set. We then show that greedy algorithm to locate the κ representative segments provides



a κ-constrained greedy approximation to the maximization of the submodular set function F (C) with the solution to be no
worse than (1− e−1) of the optimal solution.

Proof of representative set based MIL loss in (14) is a special case of the submodular diversified MIL loss in (10). We
first present a lemma, which is used in the proof.

Lemma 2. Assume that C̃+ with size κ is a solution that maximizes F (C) in (9). Then, C̃+ should contain one segment from
each mixture component (i.e. sub-scene).

Proof. The lemma can be proved by following the definition of the BN-SVP induced pairwise similarity between segments
given by (8) and then use proof by contradiction. Assume that at least two segments, say x

(t)
i ,x

(t)
j , are chosen from the same

component t. Then, there will be at least one component, say t′, where no segments are chosen by C̃+. Given the definition
of F (C) in (9), for each segment in t, either x(t)

i or x(t)
j could be used to compute the pairwise similarity based on their

closeness to that segment. Since the cohesiveness of each component is guaranteed through the BN-SVP process, both x
(t)
i

and x
(t)
j should be close to the mean of their assigned Gaussian component N (xt,Σt) to ensure a high likelihood optimized

by HDP-HMM. Due to triangle inequality, x(t)
i and x

(t)
j should be close to each other. As a result, we can assume that x(t)

i

is always chosen to evaluate the pairwise similarity Si,p with each segment x(t)
p in component t. Next, we replace x

(t)
j with

another segment x(t′)
j from component t′ to construct another solution set C+. Since x

(t′)
j has positive similarity with each

segment in t′ and the pairwise similarity between x
(t)
j and all segments in t′ is all zero, we have F (C+) > F (C̃+), which

contradicts the assumption that C̃+ maximizes F (C).

Since the representative set Ĉ+ is constructed by choosing one segment from each mixture component, it satisfies the
necessary condition to be an optimizer of F (C) specified in the above lemma. However, choosing a set of segments with
the maximum diversity is not the primary goal and the overall objective function (10) includes both the MIL loss and the
diversity, which are balanced through λ. Due to the lack of instance-level labels, choosing a λ that optimally balances the
MIL loss and the set diversity is challenging. We argue that construction Ĉ+ essentially offers alternative way to set a specific
λ to balance these two terms. First, since the constraint |C+| ≤ κ allows the set to contain less than κ segment, Ĉ+ excludes
those segments with low prediction scores. This can be viewed as setting a λ to increase −F (C+) while decreasing the MIL
loss L(C+). Similarly, instead of choosing the instance with the largest pairwise similarity with all other segments in the
same component, we choose a segment with the highest prediction score. Again, this can be viewed as further reducing the λ
to give more preference to the MIL loss as such segments can further reduce the training MIL loss. Thus, instead of directly
setting λ, which is highly challenging, Ĉ+ is constructed by leveraging both the mixture component assignments and the
prediction scores of the segments. This is equivalent to implicitly setting a λ to balance the MIL loss and the diversity of the
representative set Ĉ+, which completes the proof of the equivalence of these two objective functions.

Proof of the optimality of the greedy algorithm. We first reformulate (10) as a minimization problem minw g(w) with
g(w) defined as

g(w) =∆ min
C+⊆Bpos,|C+|≤κ

L(Bpos,Bneg)− λF (C+) (15)

The above optimization involves finding a subset C+ ⊆ Bpos that maximizes F (C+). This requires enumerating over all(
n
κ

)
possible subsets, which is expensive when there are large number of segments in a given video. Defining the discrete

objective function Gw where
Gw(C+) =∆ L(Bpos,Bneg)− λF (C+) (16)

Since −Gw(C+) is monotone non-decreasing submodular, a fast greedy procedure can be used to approximately optimize
Gw(C+). A typical greedy procedure involves evaluating the similarity between each pair of segments in a video and then
choose the segments with the largest overall similarity with the all other segments. We make two important adjustments of
this standard greedy process. First, our non-parametric HDP-HMM process follows the clustering based heuristic (Lin and
Bilmes 2018) by choosing one segment from each cluster, which avoids evaluating each candidate segment in the video.
Different from (Lin and Bilmes 2018), which chooses the data point that is closest to the cluster centroid, we choose the
one with the highest output score. Second, our similarity evaluation takes a linear complexity with respect to the bag size
by leveraging the temporal neighborhood of the segments. By leveraging the above greedy procedure, we can show that the



obtained approximate solution is guaranteed to be no worse than (1− e−1) of the optimal solution according to the standard
result from (Nemhauser et al. 1978), which completes the proof of the second part.

Table 4. Video Level Distribution on Different Datasets

Split ShanghaiTech UCF-Crime UCF-Crime Multimodal Avenue
Normal Abnormal Normal Abormal Normal Abnormal Normal Abnormal

Train 175 63 810 800 150 150 13 17

Test 155 44 150 140 30 30 3 4

C. Additional Experimental Results
In this section, we first show the detailed network architecture used in our training process. Next, we provide the ablation

study demonstrating the impact of hyperparameter ϵ used in our experimentation. Finally, we provide some additional
qualitative analysis justifying the effectiveness of the proposed approach. Further we also show effectiveness of the HDP-
HMM technique to discover subscenes of different types in a video through qualitative analysis.

C.1. Network Architecture

First, we pass the pre-trained features through the two parallel GCN branches. The upper branch captures the feature sim-
ilarity between segments and the lower one captures the temporal consistency between segments such that nearby segments
will provide similar predictions. The output of the parallel branches are combined and passed through the 5 LSTM layers
with 32 hidden units on each. Next, the output is passed through the BatchNorm. Finally, FCN is connected with sigmoid
activation to get the final prediction score.

GCN Architecure. Next, we explain the GCN architecture in detail. Let A is the n×n dimensional adjacency matrix where
the (i, j) entry in the matrix indicates the similarity between segment i and j. Mathematically,

A(i, j) = k(xi,xj) (17)

where xi and xj be the D-dimensional representation for ith and jth segments respectively. It should be noted that for the
feature similarity branch, we use the RBF kernel with the following form

k(xi,xj) = exp(
|xi − xj |2

−2l2
) (18)

In case of temporal consistency branch, we use the following form between ith and jth segment:

k(xi,xj) = exp(−|i− j|) (19)

This drives the temporally nearby segments to have a similar score. Based on the adjacency matrix, following Kipf and
Welling [8], the graph-Laplacian with the renormalization trick can be written as

Â = D− 1
2 (A+ In)D

− 1
2 (20)

In the above equation D(i,i) =
∑

j {A+ In}(i,j) is the corresponding degree matrix. The output of the feature similarity
graph is computed as:

H = ÂXW (21)

where W ∈ RD×M is a trainable parameter matrix and X ∈ Rn×D is the video specific features.

C.2. Ablation Study

Impact of ϵ. In this subsection, we show the the impact of the error threshold ϵ on the model performance. It is worth
mentioning that ϵ indicates the percentile we used to determine the threshold so as to exclude the clusters with potentially all
normal segments with a high probability. For example, ϵ = 0.1 indicates that we first determine the output score correspond-
ing to the segment that lies in the 10th percentile based on scores of all segments sorted in the non-decreasing order. This
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Figure 8. Performance variation with respect to ϵ

selected score is used as the threshold. Next, all representative segments with a predicted score below this output threshold
are discarded from the representative set Ĉ+. Figure 8 show the performance variation with respect to the different ϵ’s for five
different datasets. As can be seen, for a relatively lower ϵ value (i.e., 20-35%), the performance is fairly stable for all datasets.
This is because, with a low ϵ, the model rejects the segments from a given video with a sufficiently low output score. This
way, the chance of including normal segments from abnormal videos is minimized. Further lowering ϵ may include a good
number of normal segments, making the model mis-identify other similar normal segments as anomalies. On the other hand,
choosing a very high ϵ results in the drop in performance. In this case, some potentially abnormal segments may be missed
in the loss function and therefore, the model may have less exposure to different types of abnormal frames resulting in the
degradation of performance. In sum, as long as we stay in the relatively low range when choosing ϵ (e.g., 20-35% gives very
stable results), we can get the stable (and nearly optimal) performance.

Impact of the constraint |C| ≤ κ. It should be noted that in our approach κ only provides an upper bound on the selected
segments and the actual number is determined by the non-parametric model along with the prediction threshold ϵ. This
addresses the fundamental issue in the top-k models, in which a fixed k has to be set for all videos. Figures 9 shows that
a stable performance can be achieved for a wide range of κ values as long as it is not set too small that may exclude some
representative abnormal segments.
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Figure 9. Performance variation with respect to κ

Impact of λ. We would like to emphasize that BN-SVP does not require to directly set λ, which is highly challenging.
By leveraging the prediction score of instances and their mixture assignments, BN-SVP implicitly sets λ to balance MIL
loss and the diversity of set Ĉ+. Specifically because of the constraint |C+| ≤ κ, we ensure that the set contains no more
than κ segments. It excludes segments with a low prediction score, which has the effect of decreasing λ to reduce the MIL
loss. Similarly, instead of choosing the instance with the largest pairwise similarity with all other instances within the same
mixture assignment, it chooses the instance with the highest prediction score. This can also be viewed as choosing a smaller
λ to reduce the MIL loss.

Table 5. Performance (AUROC) with and without augmentation

Dataset UCF-Crime Avenue Multimodal ShanghaiTech Outlier
w augmentation 83.39 80.87 76.53 96.00 95.27

w/o augmentation 80.56 76.71 63.23 94.99 94.52

Impact of Augmentation. We compare the performance (AUROC) with augmentation (ρ = 1) and without augmentation
(ρ = 0). Table 5 shows the result for different datasets. As can be seen, BN-SVP consistently performs better on all
datasets than w/o augmentation. Without augmentation, the approach transitions from one state to another state quickly for
small visual changes and may not be able to keep the temporal persistence when discovering the scenes and therefore the



(a) Frame 1 (b) Frame 2

Figure 10. Example frames from UCF-Crime Stealing019; (a) Correct BN-SVP, MMIL, (b) Correct BN-SVP, incorrect MMIL

(a) Normal Frame (Component 0) (b) Abnormal Frame (Component 1) (c) Abnormal Frame (Component 2) (d) Normal Frame (Component 3)

Figure 11. Example frames from the discovered mixture components

performance is lower. We have also shown the significance of using augmentation via a qualitative analysis in Appendix C.4.

C.3. Additional Qualitative Analysis

To show the effectiveness of the proposed approach to handle multimodality, we compare BN-SVP with MMIL using
some illustrative examples. Figure 10 shows two frames from the TEST06 video in Avenue with different anomaly types. In
the first anomaly type, the object is thrown and in the second, a person is walking in the wrong lane. As the first anomaly
is more obvious, both BN-SVP and MMIL are able to correctly predict it as abnormal. For the second one, our proposed
approach correctly detects it as abnormal while MMIL fails to do that. Due to the submodular diversified loss, BN-SVP is
more likely to include even less obvious frames (e.g., Figure 10 (b)) during the training process and as a result the approach
can make a correct prediction. On the other hand, MMIL picks the one with maximum score and therefore more likely to
miss those less obvious ones during training process resulting in the mis-identification of similar frames as normal.

C.4. Effectiveness of Bayesian Non-Parametric Video Partition

In this section, we present representative frames from the mixture components (i.e. sub-scenes) discovered by the pro-
posed Bayesian non-parametric video partition process. The purpose is to demonstrate that semantically coherent segments
are automatically grouped into the same mixture components by the proposed BN-SVP. This significantly facilitates the opti-
mization of the submodular function to choose a diverse set of segments and allow some of the most representative segments
to participate in the MIL loss. Figure 11 shows frames randomly selected from different mixture components for video
01 0162 from the ShanghaiTech dataset. As shown in Figure 11 (a), the frame does not contain any person and its associated
component (i.e., Component 0) mostly consists of background segments (which are predicted as normal by the model). In
Figure 11 (b), there are multiple people in the frame. Furthermore, someone is riding a bike in a wrong lane while a second
person is pointing to another group of people. This frame is assigned to a newly created component (i.e., Component 1) since
it looks quite different from the previous frames. Also, given the abnormal behavior in the frame, the model predicts it as
an anomaly. Next shown in Figure 11 (c), as the bike starts to vanish from the camera frame, it looks different from (b) and
therefore the model assigns it to a new Component 2. Although (b) and (c) are both of abnormal types, the latter is much
less obvious than the former. Given their distinctions, they have been assigned to different mixture components so both of
them could be chosen when optimizing the submodular function to participate in model training. Finally, for Figure 11 (d),
the bike completely disappears from the frame and only a group people walking normally. So, it is assigned to Component 3
and the model predicts its as normal.

D. Link to Source Code
For the source code, please click the following link: https://github.com/ritmininglab/BN-SVP.


