
Supplementary: A Framework for Learning
Ante-hoc Explainable Models via Concepts

Limitations & Broader Impact
The increasing need for explainability in the use of Deep

Neural Network (DNN) models has in turn necessitated the
design of ante-hoc explainable models that jointly learn to
predict and explain. The limited efforts in this space such
as SENN [1] and CBM [14] have their own set of limita-
tions when used in practice. They either require concept-
level supervision to train the model or need a significant
number of additional parameters in the network, which pro-
hibits their use in deeper models more commonly used in
practice. Our framework aims to alleviate these issues. The
proposed work addresses this need, and provides a frame-
work for learning ante-hoc explainable models via concepts
with significantly lesser additional parameters when com-
pared to [1] (please see Sec 4 of main paper).

A limitation of our method is this increase in computa-
tional cost during training due to adding additional compo-
nents such as the decoder network and the concept gener-
ator to an existing DL pipeline (although this is still bet-
ter than baseline methods such as SENN). We keep addi-
tional components like the decoder network in the model
despite this limitation since the decoder encourages the in-
terpreter (or the concept generator) to generate meaningful
explanations and faithfully capture semantics of an input
image. While our model needs additional training time, its
inference time, which matters in practice, isn’t significantly
higher than the backbone architecture itself. Our framework
works by jointly learning to generate ante-hoc explanations
via concepts and predict the label for the given image. Ante-
hoc methods like ours can help understand a model’s deci-
sion and gain intuition into its inner workings. In turn, this
can help to improve the transparency and trustworthiness of
Deep Learning models. In addition to the above, our frame-
work also allows a user to intervene on learned concepts
to understand a model’s decisions. In turn, this could be
a valuable tool, especially when models are deployed for
sensitive or critical tasks.

Appendix
In this appendix, we provide details that we could not

include in the main paper owing to space constraints, in-
cluding:

• Comparison of the faithfulness of explanations gener-
ated by our technique against different post-hoc ex-
plainability methods such as LIME and Grad-CAM

• Predictive performance of our framework with differ-
ent backbone architectures

• Interpretation of concepts in the unsupervised setting
where no ground truth is known

• Details of the hyperparameters used in the experiments

• Comparison of concept-based explanations generated
by our method with and without concept supervision,
in cases where annotations of attributes are available

• Comparison of concept-based explanations generated
by our framework and baselines methods such as
SENN and CBM

• Comparison of concept-based explanations generated
by our framework with different number of concepts.

A. Comparison with Post-hoc Methods
In the recent past, there has been a lot of interest in de-

veloping techniques that try to explain a model’s prediction
after training. While these methods are helpful, the sepa-
ration of explanation from prediction is not ideal. Ideally,
we would like the techniques which generate interpretations
to explain the model’s prediction faithfully. But in the case
of post-hoc methods, when an explanation goes wrong, it is
not trivial to understand if the explanation method is incor-
rect or if the model itself relied on spurious correlations to
make a prediction. To illustrate that our framework gener-
ates more faithful explanations than post-hoc methods, we
compare the faithfulness (predictive capacity of the gener-
ated concepts, i.e., from the output of sθcce ) of well-known
post-hoc explainability methods such as LIME [23] and
Grad-CAM [27] with that of our framework. We generate
explanations with these methods for every image and pass
the modified image through the model. From Table 8, we
see that our method outperforms other post-hoc explainabil-
ity methods in terms of the faithfulness metric.

Post-hoc Baselines OURS
Dataset LIME Grad-

CAM
w/o sup w sup

CIFAR10 34.23 76.91 90.86 NA
ImageNet 29.39 47.48 59.73 NA
AwA2 46.21 75.00 79.29 83.30
CUB-200 27.68 43.51 61.49 62.59

Table 8. Comparison of faithfulness (predictive capacity of the
generated concepts) our method against post-hoc explainability
methods on CIFAR10, ImageNet, AwA2 and CUB-200 data sets.
(w/o sup = without supervision; w sup = with supervision)

B. Plug and Play: Integrating with Other
Backbone Architectures

One of the advantages of our method is that we can plug
ante-hoc interpretability to different existing DNN back-
bone architectures. To illustrate this, we incorporate ante-
hoc interpretability for 4 different popular backbones ar-
chitectures i.e. ResNet34, ResNet50, EfficientNet-B0 and
DenseNet-121 in Table 9. We consider all four datasets i.e.



CIFAR10, ImageNet, AwA2 and CUB-200 for our experi-
ments to show these results. We find that a stronger back-
bone (such as EfficientNet-B0 and DenseNet-121) helps im-
prove the performance of our framework.

Architecture CIFAR10 ImageNet AwA2 CUB-200
ResNet34 91.82 65.55 85.88 65.69
ResNet50 92.04 66.12 86.11 65.98
EfficientNet-B0 91.79 66.58 85.95 66.09
DenseNet-121 92.85 65.91 86.73 66.03

Table 9. Comparison of accuracy (in %) on CIFAR10, ImageNet,
AwA2 and CUB-200 datasets using different backbone architec-
tures as concept (or base) encoder. All numbers with AwA2 and
CUB-200 are generated with concept supervision.

C. Interpret Concepts in Unsupervised Setting
The complexity of concept interpretation in the unsuper-

vised setting depends on dataset complexity i.e. number of
classes and number of concepts used during training. For
e.g., number of concepts difficult to interpret for ImageNet
are more than for CIFAR10. This is also seen in Figs 5 & 4
in main paper, as number of homogeneous properties cap-
tured by ImageNet concepts are more than CIFAR10 con-
cepts, and hence more difficult to interpret.
We conducted a human study by selecting 5 CIFAR10 con-
cepts (Fig 5 left) and asked 10 users about the concepts that
are closest to 5 images activated by each concept (concept
activations). Both classes and the concepts (pointy, gray,
round, black, white) were provided as options to the user.
Users agreed on 90%, 100%, 90%,90% and 100% images
for the 5 concepts respectively.
We conducted the same study for ImageNet and asked the
same 10 users (as above) to choose closest concepts acti-
vated by 10 ImageNet concepts (Fig 4). As the users aren’t
aware of the fine-grained ImageNet class labels, we consid-
ered crude labels here as options as concepts i.e. dog, swan,
cucumber, watch, pen, wolf, cat, rugby, drawer and cheetah.
We also added abstract concepts (white, blue, green, circu-
lar, sharp, wolf face, cat face, game, rectangular, stripes)
as added options for the users. Here, they agreed on 90%,
70%, 80%, 60%, 100%, 70%, 50%, 80%, 70%, 70% and
60% images for the 10 concepts respectively. As ImageNet
has way more classes with many images and more com-
plex concepts compared to CIFAR10, the user agreements
are lower than above (for CIFAR10), as expected. While
we observe varying numbers for different datasets based on
complexity, evidently, there is overall high agreement on
concept interpretations generated by our model.

D. Hyperparameter details
We provide details for coefficients of loss terms (pre-

sented in Sec 3) here for all the datasets i.e. CIFAR10, Im-
ageNet, AwA2 and CUB-200. We have used similar set of

Coefficients α β γ µ

CIFAR10 / ImageNet 0.0001 0.1 0 0/0.1
AwA2 / CUB-200 0.0001 0.1 1 0

Table 10. Hyperparameter details i.e. values of α, β, γ and µ
coefficients of our experiment on CIFAR10, ImageNet, AwA2 and
CUB-200 datasets.

coefficients for CIFAR10 and ImageNet. Also, similar set
of coefficients were used for AwA2 and CUB-200 datasets.
All these results are shown in Table 10. Please note that, for
CIFAR10 and ImageNet, γ is 0 as there is no concept su-
pervision, and µ can be 0 based on use of self-supervision
on concepts. On the other hand, µ is 0 for AwA2 and CUB-
200, as self-supervision is not required due to presence of
ground truth concepts.

E. Qualitative Evaluation
This section presents additional qualitative studies on the

quality of concepts and an ablation study on change in num-
ber of concepts.

E.1. Quality of Concepts

Concepts: With and Without Supervision: In this section,
we observe that the concepts discovered by our framework
correspond to some of the ground truth attributes even when
trained without concept supervision. We considered AwA2
and CUB-200 for this study, as these datasets have ground-
truth concepts for every image. We generated a set of im-
ages that maximally activate each concept for both types
of models, i.e., with and without concept supervision, and
present such results for some of the concepts in Figures 7
and 8 for AwA2 and CUB-200 respectively. In these fig-
ures, five concepts on the left are generated from the model
trained without concept supervision. The rest of the con-
cepts were generated by the model trained with concept su-
pervision. For example, the images for ψ5 (from the model
without concept supervision) are visually similar to the im-
ages for the LONGNECK concept (from the model with con-
cept supervision) from Figure 7. Also, the images for ψ3

(from the model without concept supervision) are visually
similar to the images for HAS WING COLOR::RED concept
(from the model with concept supervision) from Figure 8.

Concepts: Ours vs CBM: Apart from the quantitative
results presented in the main paper, which compare our
method with the baseline method that considers concept
supervision, i.e., Concept Bottlencek Methods (CBM), we
herein show sample qualitative results. We generated im-
ages that maximally activate every concept learned by our
model as well as CBM and show in Figures 9 and 10 for
AwA2 and CUB-200 respectively. While all the concepts
are meaningful visually, we can see a better selection of rep-
resentative images for the concepts generated by our model.



For example, images activated for the FIELDS concept for
our model represent the concept better than the images ac-
tivated for CBM from fig.9. Similarly, images activated for
HAS BILL SHAPE::SPATULATE concept for our model rep-
resent the concept better than the images activated for CBM
from Figure 10.

Concepts: Ours vs SENN: We present more qualitative
results to compare the concepts generated by our method
(without concept supervision) and SENN for CIFAR10 and
ImageNet datasets. Figures 11 and 12 represent results with
CIFAR10 for our method (without concept supervision) and
SENN respectively. We observe that the concepts captured
by SENN tend to repeat more and are less diverse than those
generated by our method, thus leaving out some important
aspects of the dataset. Similar issues are observed from
the concept activations generated by SENN for ImageNet
in Figure 13. For example, many concepts capture round-
shaped objects or objects with a round head and miss some
important hidden concepts in the dataset (for concept-based
explanations generated by our method on ImageNet, please
see Figure 4).

E.2. Ablation Study: Number of Concepts

While the number of concepts is available apriori for the
datasets with ground truth concepts, it’s not known before-
hand for other datasets like CIFAR10. Hence it is a choice
(or hyperparameter) left to the user. To understand the im-
pact of the number of concepts on the performance of our
framework, we experimented with different number of con-
cepts for CIFAR10 (i.e., 5 and 15) and achieve 91.51%
and 91.58% accuracies, respectively. These numbers are
very close to the model’s accuracy with ten concepts (i.e.,
91.68%). We further analyzed the concepts generated by
these two models (with 5 and 15 concepts) for more in-
sights. We present the maximally activated images for ev-
ery concept in Figures 14 and 15 for our models with 5 and
15 concepts respectively. It is evident that the model with
5 concepts (from Figure 14) is not able to capture all arti-
facts of the CIFAR10 dataset, whereas the model with 15
concepts (Figure 15) captures the most number of dataset
artifacts (compared to models with 5 and 10 concepts), but
it has repetitions of concepts. For example, the concept rep-
resenting ”deer” is not captured by any model except the
model with 15 concepts. Exploring adaptive number of con-
cepts and enforcing concept exclusivity while training could
be interesting directions of future extensions of our work.



Figure 7. A subset of 5 concepts learned by our framework on AwA2 each with (right) and without (left) concept supervision. Please note
that some of the concepts learned without concept supervision capture similar concepts that are learned with concept supervision.

Figure 8. A subset of 5 concepts learned by our framework on CUB-200 each with (right) and without (left) concept supervision. We
observe that some of the concepts learned without concept supervision capture similar concepts that are learned with concept supervision.



Figure 9. A subset of 5 concepts learned by our framework on AwA2 each with CBM (left) and our method (right). Here we consider our
method with concept supervision for fair comparison with CBM.

Figure 10. A subset of 5 concepts learned by our framework on CUB-200 each with CBM (left) and our method (right). Here we consider
our method with concept supervision for fair comparison with CBM.



Figure 11. Concept activations (i.e. images that maximally activate each concept) learned by our framework on CIFAR10. It can be seen
that each concept captures a certain set of homogeneous properties corresponding to a class. For instance, ψ1 is mostly activated for images
from cat class and the same for ψ6 happens for images from frog class.

Figure 12. Concept activations (i.e. images that maximally activate each concept) learned by SENN on CIFAR10. It can be seen that
some of the concepts are not able to capture a certain set of homogeneous properties corresponding to a class. For instance, ψ5 is mostly
activated for images from aeroplane class along with one image from horse class. Also, the maximally activated images for ψ5 are from
frog and dog classes.

Figure 13. Concept activations (i.e. images that maximally activate each concept) learned by SENN on ImageNet. It can be seen that some
concepts are not able to capture a certain set of homogeneous properties corresponding to one or many classes. For instance, ψ8 is mostly
activated for images which are visually not of similar structure. Also, most of the concepts capture a few of the properties, thus miss out
on other important artifacts. For instance, ψ1, ψ2, ψ3 and ψ10 capture round shaped objects or objects with round shaped head.



Figure 14. Concept activations (i.e. images that maximally activate each concept) learned by our framework (with 5 concepts) on CIFAR10.
It can be seen that each concept captures a certain set of homogeneous properties corresponding to a class. For instance, ψ1 is mostly
activated for images from aeroplane class and ψ2 is mostly activated for images from frog class. It is also clear that all the important
concepts are not captured by this model due to less number of concepts (i.e. 5 concepts).

Figure 15. Concept activations (i.e. images that maximally activate each concept) learned by our framework (with 15 concepts) on
CIFAR10. It can be seen that each concept captures a certain set of homogeneous properties corresponding to a class. For instance, ψ7 is
mostly activated for images from bird class and ψ9 is mostly activated for images from cat class. Also some of the concepts are repeated
by this model due to more number of concepts (i.e. 15 concepts). For example, ψ2, ψ4 are both activated for images from horse class, ψ3,
ψ6 are both activated for images from truck class and ψ8, ψ11 are both activated for images from automobile class.
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