
Supplementary Materials:
Towards Driving-Oriented Metric for Lane Detection Models

Takami Sato
University of California, Irvine

takamis@uci.edu

Qi Alfred Chen
University of California, Irvine

alfchen@uci.edu

A. Detailed Settings of Lane Detection Metrics

Table 1 shows the required parameters and input to cal-
culate each metric for lane detection. As shown, only E2E-
LD requires multiple frames for computation. For E2E-
LD and PSLD, we adopt the kinematic bicycle model [7]
to simulate the vehicle motion. The only parameter in the
kinematic bicycle model is the wheelbase. We use Wheel-
Base=2.65 meters, which is the wheelbase of Toyota RAV4
2017.

Table 1. Parameter and input of metrics for Lane Detection

Parameter Input Per-frame
Accuracy α X0 ✓
F1 score α,β X0 ✓
E2E-LD TE , WheelBase X0, ...,XTE

,C
PSLD Tp, WheelBase X0,C ✓

B. Detailed Attack Implementation

We use the official implementation of the DRP at-
tack [12]. We also use parameters that are reported to
have the best balance between effectiveness and secrecy:
the learning rate is 10−2, the regularization parameter λ is
10−3, and the perturbable area ratio (PAR) is 50%. We run
200 iterations to generate the patch in all experiments.

C. Details of Comma2k19-LD dataset

Fig. 1 shows the first frame of all 100 scenarios and its
lane line annotations. For annotation, human annotators
mark the lane line points and check if the linear interpo-
lation results of the markings align with the lane line infor-
mation. To convert the annotations to the TuSimple dataset
format, we sample points every 10 pixels in the y-axis from
the interpolated results.

D. Adaptation to TuSimple Challenge Camera
Frames Geometory

In the evaluation of the comma2k19-LD dataset, we use
the same pretrained models trained on the TuSimple Chal-
lenge training dataset. To deal with the differences in the
datasets, we convert the camera frames in the comma2k19-
LD dataset to have similar geometry as the camera frames
in the TuSimple challenge dataset. Fig. 2 illustrates the
overview of the conversion. We remove the surrounding
area and use only the central part of the Comma2k19-LD
camera frame to have the same sky-ground area ratio and
the same lane occupation ratio in the image width with the
ones in the TuSimple dataset.

E. Evaluation of the Domain Shift Effect
In this study, we use lane detection models pre-

trained on the TuSimple dataset and evaluate them on the
Comma2k19-LD dataset. Although both datasets are sim-
ilar driver’s view images, there can be some domain shifts
between them. To understand the impact, we trained the
4 models with another 100 scenarios extracted from the
Comma2k19 dataset. We run 10 epochs with the data on
top of the models pretrained on the TuSimple dataset. For
the lane line labels, we use OpenPilot’s lane detection re-
sults in the dataset. We conduct the same evaluation in §4.2
and §4.3 of the main paper. As shown in Table 2 and Ta-
ble 3, the observations are consistent: SCNN outperforms in
the conventional metrics; PolyLaneNet is the most robust in
attack scenarios. The Pearson correlation coefficients show
almost the same results as the ones in §4.2 and §4.3 that
the conventional metrics have strong negative correlations
in the benign scenarios and the correlations in the attack
scenarios are not statistically significant.

However, the E2E-LD in the attack scenarios are gen-
erally higher than the results in §4.2 and §4.3 of the main
paper while the E2E-LD in the benign scenarios is gener-
ally lower. This indicates that this additional fine-tuning im-
proves the performance in the benign scenarios, but it harms
the robustness against adversarial attacks.

1



Figure 1. The first frame of all 100 scenarios and its lane line annotations (green line)

Table 2. Evaluation results of the E2E-LD and the conventional metrics, accuracy and F1 in the benign and attack scenarios. For each
metric, the corresponding Pearson correlation coefficient with E2E-LD in the bottom rows. The bold and underlined letters indicate the
highest and lowest performance or correlation, respectively.

Benign Attack
Original Parameters
(α = 20, β = 0.85)

Original Parameters
(α = 20, β = 0.85)

E2E-LD [m] Accuracy F1 E2E-LD [m] Accuracy F1

M
et

ri
c

SCNN [8] 0.20 0.93 0.84 0.52 0.67 0.30
UltraFast [9] 0.18 0.92 0.84 0.62 0.49 0.16
PolyLaneNet [14] 0.13 0.93 0.86 0.54 0.62 0.33
LaneATT [13] 0.14 0.93 0.85 0.71 0.51 0.12

C
or

r.

SCNN [8] - -0.65∗∗∗ -0.51∗∗∗ - -0.09ns -0.04ns

UltraFast [9] - -0.63∗∗∗ -0.60∗∗∗ - 0.14ns 0.07ns

PolyLaneNet [14] - -0.32∗∗∗ -0.62∗∗∗ - 0.14ns 0.04ns

LaneATT [13] - -0.57∗∗∗ -0.26∗∗∗ - -0.02ns -0.06ns

ns Not Significant (p > 0.05),∗ p ≤ 0.05,∗∗ p ≤ 0.01,∗∗∗ p ≤ 0.001

F. Alternative metric design

To improve the conventional metrics, one of the most in-
tuitive approaches is the L1 or L2 distance in the bird’s eye
view because they do not suffer from the problem of the
ill parameters discussed in §2.2, and lane detection results
from a bird’s eye view may be a more adequate to mea-
sure of drivability than detection results from a front cam-
era. We actually have considered such metrics before, but
we did not finally choose them because, without some form
of control simulation, we find it fundamentally nontrivial
to accurately predict the combined effects of detection er-

rors at different lane line positions and with different er-
ror amounts on the downstream AD driving. This can be
concretely shown in Table 4. As shown, both such 3D-L1
and 3D-L2 distance metrics have considerably lower corre-
lation coefficient r with E2E-LD compared to our PSLD.
They are indeed better than conventional accuracy and F1
score metrics. However, they are still leading to erroneous
judgment on downstream AD performance similar to the ac-
curacy and F1 score: e.g., PolyLaneNet is 2nd-worst based
on 3D-L1/L2 distance metrics in the attack scenarios, but
in E2E-LD it is the best. With our PSLD, such judgment is

2



Sky area: 140px

Lane occupies 78% of the width.

Ground area: 580px

Remove hood area

Remove sky are to make the 
sky-ground area ratio 140:580.

Remove the side areas so that the 
lane occupies 78% of the width.

(a) TuSimple camera frame 

(b) Comma2k19 camera frame 

Figure 2. Overview of adapting the camera frames in
Comma2k19-LD dataset to the camera frame in the TuSimple
Challenge dataset. We remove the surrounding area and use only
the central part of the Comma2k19 camera frame to ensure that
the comma2k19-LD camera frames have similar geometry as the
TuSimple challenge camera frames.

Table 3. Evaluation results of the E2E-LD and PSLD in the benign
and attack scenarios. The format is the same as Table 2.

Benign Attack
E2E-LD [m] PSLD [m] E2E-LD [m] PSLD [m]

M
et

ri
c

SCNN [8] 0.20 0.04 0.52 0.61
UltraFast [9] 0.18 0.02 0.62 0.66
PolyLaneNet [14] 0.13 0.02 0.54 0.55
LaneATT [13] 0.14 0.03 0.71 0.82

C
or

r.

SCNN [8] - 0.93∗∗∗ - 0.93∗∗∗

UltraFast [9] - 0.60∗∗∗ - 0.99∗∗∗
PolyLaneNet [14] - 0.65∗∗∗ - 0.99∗∗∗
LaneATT [13] - 0.55∗∗∗ - 0.78∗∗∗

ns Not Significant (p > 0.05),∗ p ≤ 0.05,∗∗ p ≤ 0.01,∗∗∗ p ≤ 0.001

strictly consistent with E2E-LD (Table 4). One reason we
observe is that the 3D-L1/L2 metrics can be greatly biased
by farther points; those points by design have much less im-
pact on the downstream AD control, but suffer from more
detection errors (due to the far distance). One thought is to
assign smaller weights to farther points, but how to system-
atically decide such weights without any form of control
simulation is fundamentally nontrivial. Additionally, such
a weight-based design can still be fundamentally limited in
achieving sufficient AD control relating capabilities.

Table 4. Pearson correlation coefficient r with E2E-LD. 3D-L1/L2
denote the L1/L2 distances in 3D space following Reviewer 1’s
suggestion. Bold and underline denote highest and lowest scores.

Benign Attack
PSLD (ours) 3D-L1 3D-L2 PSLD 3D-L1 3D-L2

SCNN 0.93 0.71 0.65 0.96 0.38 0.34
UltraFast 0.54 0.24 0.19 0.93 0.24 0.21
PolyLaneNet 0.49 0.47 0.44 0.97 0.33 0.38
LaneATT 0.38 0.23 0.17 0.95 0.23 0.23
Average 0.59 0.41 0.36 0.95 0.29 0.29

G. Details of OpenPilot ALC and its integra-
tion with lane detection models

In this section, we explain the details of OpenPilot
ALC [2] and the details of its integration with the 4 lane
detection models we evaluate in this study. As described
in [12], the OpenPilot ALC system consists of 3 steps: lane
detection, lateral control, and vehicle actuation.

G.1. Lane detection

The image frame from the front camera is input to the
lane detection model in every frame (20Hz). Since the orig-
inal OpenPilot lane detection model is a recurrent neural
network model, the recurrent input from the previous frame
is fed to the model with the image. All 4 models used in
this study do not have a recurrent structure, i.e., they de-
tect lanes only in the current frame. This is because the
TuSimple Challenge has a runtime limit of less than 200
ms for each frame. Another famous dataset, CULane [8],
does not provide even continuous frames. In autonomous
driving, the recurrent structure is a reasonable choice since
past frame information is always available. Hence, the run-
time calculation latency imposed in the TuSimple challenge
is one of the gaps between the practicality for autonomous
driving and the conventional evaluation.

G.2. Lateral control

Based on the detected lane line, the lateral control de-
cides steering angle decisions to follow the lane center (i.e.,
the desired driving path or waypoints) as much as possible.
The original OpenPilot model outputs 3 line information:
left lane line, right lane line, and driving path. The de-
sired driving path is calculated as the average of the driving
path and the center line of the left and right lane lines. The
steering decision is decided by the model predictive control
(MPC) [11]. The detected lane lines are represented in the
bird’s-eye-view (BEV) because the steering decision needs
to be decided in a world coordinate system.

On the contrary, all 4 models used in this study detect
the lane lines in the front-camera view. We thus project
the detected lane lines into the BEV space with perspective
transformation [6, 15]. The transformation matrix for this
projection is created manually based on road objects such
as lane markings, and then calibrated to be able to drive
in a straight lane. We create the transformation matrix for
each scenario as the position of the camera and the tilt of
the ground are different for each scenario. The desired driv-
ing path is calculated by the average of the left and right
lane lines and fed to the MPC to decide the steering angle
decisions.

In addition to the desired driving path, the MPC receives
the current speed and steering angle to decide the steering
angle decisions. For the steering angle, we use the human

3



driver’s steering angle in the Comma2k19 dataset in the first
frame. In the following frames, the steering angle is up-
dated by the kinematic bicycle model [10], which is the
most widely-used motion model for vehicles. For the ve-
hicle speed, we use the speed of human driving in the in the
comma2k19 dataset as we assume that the vehicle speed is
not changed largely in the free-flow scenario, in which a
vehicle has at least 5–9 seconds clear headway [5].

G.3. Vehicle actuation

The step sends steering change messages to the vehicle
based on the steering angle decisions. In OpenPlot, this step
operates at 100 Hz control frequency. As the lane detection
and lateral control outputs the steering angle decisions in 20
Hz, the vehicle actuation sends 5 messages every steering
angle decision. The steering changes are limited to a maxi-
mum value due to the physical constraints of vehicle and for
stable and for stability and safety. In this study, we limit the
steering angle change to 0.25◦ following prior work, which
is the steering limit for production ALC systems [12].

We update the vehicle states with the kinematic bicy-
cle model based on the steering change. Note that like all
motion models, the kinematic bicycle model does have ap-
proximation errors to the real vehicle dynamics [7]. How-
ever, more accurate motion models require more complex
parameters such as vehicle mass, tire stiffness, and air resis-
tance [1]. In this study, since our focus is on understanding
the impact of lane detection model robustness on end-to-end
driving, the most widely-used kinematic bicycle model is a
sufficient choice for simulating closed-loop control behav-
iors.

H. Additional Discussions and Results

H.1. Additional Discussions

Ground-Truth Road Center. We obtain the ground
truth waypoints based on the human driving traces. Ide-
ally, the waypoints should be obtained by measuring roads.
However, since this study focuses on the general trends of
the 4 lane detection approaches, we consider that the impact
of this factor should not have a major effect. If you want to
use PSLD to capture more subtle differences between mod-
els, the ground truth should be more accurate.

Differentiable PSLD Regularization. We show that
PSLD works as a good surrogate for E2E-LD. Next, we may
want to minimize this metric directly in the model training.
Since the only non-differentiable computation in PSLD is
the lateral controller, we can replace this part with a differ-
entiable controller [4,16] and incorporate it as a regulariza-
tion term in the loss function for training. Detailed study of
this problem is left to future work.

H.2. TuSimple Challenge Dataset

Fig. 3 shows the examples of lane detection results and
the accuracy metric in benign scenarios on the TuSimple
Challenge dataset [3]. The limitations of the conventional
metrics can be found in benign cases as well. As shown,
SCNN has always higher accuracy than PolyLaneNet (at
most 18% edge). Such a large leading edge is across the
dataset as in Table 2 (89% vs 72% in Accuracy, 75% vs
50% in F1 score). However, for downstream AD their per-
formances are almost the same, with PolyLaneNet actually
slightly better (Table 3 of the main paper).

SCNN UltraFast PolyLaneNet

Accuracy: 73%Accuracy: 100%Accuracy: 91%

Accuracy: 85% Accuracy: 90% Accuracy: 83%

Accuracy: 88% Accuracy: 100% Accuracy: 76%

LaneATT

Accuracy: 100%

Accuracy: 90%

Accuracy: 100%

Figure 3. Examples of lane detection results and the accuracy met-
ric in benign scenarios on TuSimple Challenge dataset [3]. As
shown, the conventional accuracy metric does not necessarily in-
dicate drivability if used in autonomous driving

H.3. Comma2k19 LD Dataset

We synthesize font-camera frames with a vehicle mo-
tion model [10] and perspective transformation [6, 15].
Fig. 4, 5, 6, 7, show the first 20 frames under attack and
their detection results of the 4 lane detection methods, re-
spectively. As shown, the generated images are generally
complete and the distortion is very slight.

Figure 4. The first 20 frames (from left-top to right-bottom) of an
attack scenario on SCNN. The vehicle is deviating to right due to
the attack.

4



Figure 5. The first 20 frames (from left-top to right-bottom) of an
attack scenario on UltraFast. The vehicle is deviating to right due
to the attack.

Figure 6. The first 20 frames (from left-top to right-bottom) of an
attack scenario on PolyLaneNet. The vehicle is deviating to right
due to the attack.

Figure 7. The first 20 frames (from left-top to right-bottom) of an
attack scenario on LaneATT. The vehicle is deviating to right due
to the attack.

References
[1] Modeling a Vehicle Dynamics System. https://www.

mathworks.com/help/ident/ug/modeling-a-
vehicle-dynamics-system.html. 4

[2] OpenPilot: Open Source Driving Agent. https://gith

ub.com/commaai/openpilot. 3
[3] TuSimple Lane Detection Challenge. https://github

.com/TuSimple/tusimple-benchmark/tree/m
aster/doc/lane detection, 2017. 4

[4] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots,
and J Zico Kolter. Differentiable MPC for end-to-end plan-
ning and control. In NeurIPS, 2018. 4

[5] Amardeep Boora, Indrajit Ghosh, and Satish Chandra. Iden-
tification of free flowing vehicles on two lane intercity high-
ways under heterogeneous traffic condition. Transportation
Research Procedia, 21:130–140, 2017. 4

[6] Richard Hartley and Andrew Zisserman. Multiple View Ge-
ometry in Computer Vision. Cambridge University Press, 2
edition, 2003. 3, 4

[7] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco
Borrelli. Kinematic and Dynamic Vehicle Models for Au-
tonomous Driving Control Design. In IV, 2015. 1, 4

[8] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and
Xiaoou Tang. Spatial as Deep: Spatial CNN for Traffic Scene
Understanding. In AAAI, 2018. 2, 3

[9] Qin, Zequn and Wang, Huanyu and Li, Xi. Ultra Fast
Structure-Aware Deep Lane Detection. In ECCV, 2020. 2, 3

[10] Rajesh Rajamani. Vehicle Dynamics and Control. Springer
Science & Business Media, 2011. 4

[11] Richalet, J. and Rault, A. and Testud, J. L. and Papon, J.
Paper: Model Predictive Heuristic Control. Automatica,
14(5):413–428, Sept. 1978. 3

[12] Takami Sato, Junjie Shen, Ningfei Wang, Yunhan Jia, Xue
Lin, and Qi Alfred Chen. Dirty Road Can Attack: Security
of Deep Learning based Automated Lane Centering under
Physical-World Attack. USENIX Security Symposium, 2021.
1, 3, 4

[13] Lucas Tabelini, Rodrigo Berriel, Thiago M. Paix ao, Clau-
dine Badue, Alberto Ferreira De Souza, and Thiago Oliveira-
Santos. Keep your Eyes on the Lane: Real-time Attention-
guided Lane Detection. In CVPR, 2021. 2, 3

[14] Lucas Tabelini, Rodrigo Berriel, Thiago M Paixao, Claudine
Badue, Alberto F De Souza, and Thiago Oliveira-Santos.
Polylanenet: Lane Estimation via Deep Polynomial Regres-
sion. In ICPR, 2021. 2, 3

[15] Shiho Tanaka, Kenichi Yamada, Toshio Ito, and Takenao
Ohkawa. Vehicle Detection Based on Perspective Transfor-
mation Using Rear-View Camera. Hindawi Publishing Cor-
poration International Journal of Vehicular Technology, 9,
03 2011. 3, 4

[16] Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-
limited differential dynamic programming. In ICRA, 2014.
4

5

https://www.mathworks.com/help/ident/ug/modeling-a-vehicle-dynamics-system.html
https://www.mathworks.com/help/ident/ug/modeling-a-vehicle-dynamics-system.html
https://www.mathworks.com/help/ident/ug/modeling-a-vehicle-dynamics-system.html
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection

	. Detailed Settings of Lane Detection Metrics
	. Detailed Attack Implementation
	. Details of Comma2k19-LD dataset
	. Adaptation to TuSimple Challenge Camera Frames Geometory
	. Evaluation of the Domain Shift Effect
	. Alternative metric design
	. Details of OpenPilot ALC and its integration with lane detection models
	. Lane detection
	. Lateral control
	. Vehicle actuation

	. Additional Discussions and Results
	. Additional Discussions
	. TuSimple Challenge Dataset
	. Comma2k19 LD Dataset


