
Supplementary Material:
RADU: Ray-Aligned Depth Update Convolutions for ToF Data Denoising

Michael Schelling, Pedro Hermosilla, Timo Ropinski
Ulm University, Germany

{michael-1.schelling, pedro-1.hermosilla-casajus, timo.ropinski}@uni-ulm.de

1. Further Insights on ToF Working Principle
A convenient formulation for the sinusoidal part v of the

measurements mθ , is to represent it in the complex plane
C via

v = A · ei∆φ, (1)

Re(v) =
∑
θ

− sin(θ) ·mθ, (2)

Im(v) =
∑
θ

cos(θ) ·mθ. (3)

Which allows to express the measurements mθ as [3]

mθ = I +A cos(∆φ+ θ), (4)

= I +Re
(
v · eiθ

)
, (5)

Using this notation the amplitude A, the intensity I and the
the phase delay ∆φ can be recovered as

A = ∥v∥2. (6)

I =
1

N

∑
θ

mθ, (7)

∆φ = arg(v) (8)

= arctan

(
Re(v)

Im(v)

)
, (9)

where N is the number of phase shifted measurements mθ.
Note that this is not an exact solution but a least-squares
optimal solution [3].

Given measurements at two different frequencies f1, f2 a
computationally cheap solution [6] to unwrap the distances
is by minimizing

min
m,n

∣∣d(f1) +m · dmax(f1)− d(f2) + n · dmax(f2)
∣∣.
(10)

We use this approach to compute the phase unwrapped high
frequency ToF depth in the experiment on our Cornell-Box
dataset.

2. Extension of MC-Convolutions with RADU
Monte-Carlo Convolution The Monte-Carlo point convo-
lution of Hermosilla et al. [7] approximates the convolution
of two continuous functions, the features f and the kernel
function g, where f is only known at the discrete positions
{pi}, the point cloud, using the Monte-Carlo numerical in-
tegration. Formally, let a point cloud {pini } ⊂ R3, input
features {f in

i } ⊂ RCin and a convolution radius r ∈ R be
given. Further let Nj denote the neighborhood of pinj , given
as

Nj = {i : ∥pj − pi∥2 ≤ r} ⊂ N. (11)

Then the Monte-Carlo convolution on point pj with radius
r is defined as

(f ∗ g)(pj) := |Nj |−1
∑
i∈Nj

fi · g
(

pi−pj

r

)
pde(pi | pj)

, (12)

where pde(pi | pj) denotes a point-density estimation of
pi inside the receptive field of pj , and the kernel function
g : R3 → RCin×Cout is represented implicitly using one
or multiple MLPs. In analogy to 2D convolutions, the eval-
uation of g on the relative position (pi − pj)/r yields the
convolution weight matrix Wij .
RADU To predict the additional point update puj ∈ R we
extend g to predict an additional output channel, i.e.

g : R3 → RCin×Cout × RCin×1

≃ RCin×(Cout+1), (13)
pi − pj

r
7→

(
Wij ,W

u
ij

)
. (14)

Using this kernel function in Eq. (12), the dimensionality of
the output of the convolution is increased by one, i.e. (f ∗
g)(pj) ∈ RCout+1. We split the output into features fout

j ∈
RCout , and the point update puj . To summarize the point
update is computed as

puj := |Nj |−1
∑
i∈Nj

fi ·Wu
ij

pde(pi | pj)
. (15)

1

The final update along the associated camera ray is per-
formed as described in the main paper

poutj = pinj + α · tanh(puj) · rj . (16)

Computational Complexity of RADU Let Cin, Cout be
the number of input and output features, respectively. The
number of parameters #P of the above described a 3D
RADU convolution with hidden dimension h in the kernel
MLP is given as

#P3D = h · Cin · (Cout + 1) + 3h+ Cout, (17)
∈ O(h · CinCout). (18)

The #P of a 2D convolution with kernel size k is

#P2D = k2 · Cin · Cout + Cout, (19)

∈ O(k2 · CinCout). (20)

The leading terms are h · CinCout and k2 · CinCout. In
our RADU network we use a hidden MLP dimension of
h = 16 which places its number of parameters between a
2D convolution with k = 3 and k = 5.

3. Network Architecture - Hyperparameters
We provide additional parameters of our network archi-

tecture for a full description. Our networks consists of three
initial 2D convolutions, followed by a 2.5D pooling layer,
three 3D RADU convolutions, a 3D-2D projection with up-
scaling and a final stack of three 2D convolutions.

The first three 2D convolutions have feature channels of
sizes [64, 64, 128]. The 2.5D pooling layer uses a stride of
8 × 8 and applies average pooling on both the point depths
and the features. The 3D RADU convolutions use single
MLPs with 16 hidden neurons as kernel functions, and a
regularization of the point updates with α = 0.1 m. The
receptive fields are [0.1 m, 0.2 m, 0.4 m] and the feature
channels are of sizes [128, 256, 128]. The up-scaling layer
uses bilinear interpolation. The extracted depth of the points
is projected back into a 2D depth image and is used as ad-
ditional input to the following 2D layers. The final 2D con-
volutions have feature channels of sizes [64, 64, 1].

In between all convolutional layers, 2D and 3D, we use
leaky ReLU with α = 0.1 as non-linear activation. All 2D
convolutions further have a kernel size of 3 × 3 and use
’same’ padding.

Finally we use a skip connection between the two 2D
blocks with feature concatenation.

4. Cornell-Box - Dataset Generation
We generate our dataset using the transient renderer of

Jarabo et al. [8], which has been deployed for ToF data gen-
eration in previous works [5, 10].

Figure 1. An example scene with three different material proper-
ties. The images show the intensity I at a frequency of 20 MHz
as given by Eq. (7). In the left scene the box material is highly
reflective, the right scene contains an object with a dark material.

Camera Properties Inspired by the work of Miller et al.
[11], which propose an approach to modify standard cam-
eras for ToF captures, we simulate the properties of a Rasp-
Berry Pi 3 camera equipped with an Electro-Absorption
Modulator (EAM), which modulates the received signal sr
in front of the camera sensor.
Scene Generation To ensure challenging scenes with high
MPI levels we design our scenes inspired by the Cornell-
Box [4] layout, and place a random number of objects, be-
tween 1 and 10, in the scene. The used objects meshes are
taken from a subset of the Thingi10k dataset [14], contain-
ing 3D models under CC license. For each 3D object a ma-
terial property is randomly sampled, the assignment of dark
materials allows to simulate regions with lower SNR values.
Further the material of the surrounding box allows, to some
degree, control over the level of MPI in the scene. An ex-
ample of a scene with different materials is shown in Fig. 1.
ToF Simulation Using the transient renderer we compute
the impulse response h(t) of the scene, which contains the
received signal sr in a time resolved format after illuminat-
ing the scene with a light impulse. Given the impulse re-
sponse the measurements mθ can be simulated for different
frequencies f and phase offsets θ using

sr(t) = h(t) ∗ se(t), (21)

in the formula from the main paper

mθ =
1

δt

∫
δt

sr(t) · se
(
t+

θ

2πf

)
dt. (22)

The resulting measurements for an example scene are
shown in Fig. 2. Further a scene table can be found at the
end of this document in Fig. 13, 14 and 15.
Additional Noise We simulate the combination of shot
noise, thermal noise and read noise as an Additive White
Gaussian Noise (AWGN) using the specifications of the
RaspBerry Pi 3 camera of Pagnutti et al. [12], who use the
linear noise model of the EMVA Standard 1288 [2]. We use
the ISO 100 measurements of the former as reference, who
measured a gain K of 0.33 and a Y-intercept b of −18.4 on

0

GT

20
M
H
z

50
M
H
z

70
M
H
z

de
pt
h

π

ToF 50 MHz

π/2

ToF 20 MHz

3π/2

ToF 70 MHz

Figure 2. Example scene from our Cornell-Box dataset. Simulated
measurements mθ for different values of θ ∈ {0, π/2, π, 3π/2}
and frequencies f ∈ {20, 50, 70} are shown in the top rows. The
reconstructed ToF depths, including phase wrapping, are shown in
the bottom row.

the mean-variance curves

σ2 = K ·m+ b, (23)

where m is the mean value across multiple measurements
and σ2 is the variance of the measurements. From Eq. (23)
we infer the pixel-wise variance σ2

x,y dependent on the mea-
surement mθ on pixel (x, y) for the AWGN N (0, σ2

x,y).
In our dataset, we provide measurements mθ without

the AWGN to allow the online generation of AWGN dur-
ing training for data augmentation, and to allow future re-
searchers to simulate other noise models.

5. Experiments
We briefly describe additional details about the exper-

iments, including data augmentation and hyperparameter
settings.

The ADAM optimizer [9] is used during backpropaga-
tion in all trainings described below.

5.1. Data Augmentation

To increase the variety in the datasets we use the follow-
ing data augmentation strategies on the input features.
Mirroring Random mirroring along image axes.
Image Rotation Random rotation by 0◦, 90◦, 180◦, 270◦.
Small Rotation Additional rotation with a random angle in

the range [−5◦, 5◦]. Values outside the image boundaries
are interpolated with a nearest strategy, as implemented in
the preprocessing pipeline of tensorflow.keras.
Noise Additive Gaussian noise with a relative standard de-
viation of 0.02.
Random Cropping In the case of training on image patches
we crop random regions of the images every epoch.

We further experimented with the MPI augmentation of
Agresti et al. [1], but found it did not improve the perfor-
mance in our experiments.

5.2. Soft-Kinect - Datasets S1-S5

Since no raw measurements are available in the dataset,
we do not compare to the End2End method in this setting.
While in theory a reconstruction of mθ could be done us-
ing Eq. (4), the error accumulation results in data unfit for
training.

The input resolution of the Soft-Kinect is 320 × 240,
which results in a latent point cloud of 1.2k points after the
2.5D pooling in our proposed network architecture. On the
real datasets of size 320×239 we pad the input to the using
reflective padding to the full resolution 320× 240.

We use the same input features as CFN, by setting f1 =
70MHz, f2 = 20MHz, f3 = 40MHz. Note, the provided
ToF depth at 70MHz is phase unwrapped in this experiment.
Pre-Training Our network is pre-trained on the synthetic
dataset S1 using a learning rate of 1e-3 and an exponential
learning rate decay of 0.1 every 100 epochs and a batch size
of 8. The network converged after 300 epochs.
Cyclic Self-Training After pre-training our network on
synthetic data, we train the network on the unlabeled real
dataset S2 using pseudo-labels as described in the main pa-
per. In each training step, we choose real examples with a
probability of p = 0.5 and update the pseudo-labels every
ncycle = 20 epochs. We train with a small learning rate of
5e-5 and a batch size of 4 for 100 epochs.
Supervised Domain Adaptation For comparison we fine-
tune our network, after pre-training on synthetic data, using
the labeled real dataset S3. We train with a small learning
rate of 1e-5 and a batch size of 4 for 100 epochs.

5.3. RaspBerry-Pi 3 - Cornell-Box Dataset

We use a resolution of 512 × 512 during training which
results in 4096 points in the latent point clouds. The in-
put features for our network are computed by using f1 =
20MHz, f2 = 50MHz, f3 = 70MHz. The network is
trained with an initial learning rate of 1e-3 and an expo-
nential learning rate decay of 0.1 every 100 epochs, and a
batch size of 4. The network converged after 300 epochs.
DeepToF includes an Auto-Encoder (AE) training stage on
real data for domain adaptation. As there is no real data in
this experiment, we train models with pre-training the AE,
as described in the original paper, and training the entire

network combined, without pre-training. We also tune the
learning rate with initial learning rates from {1e-3, 1e-4}
and decay steps from {50, 75, 100}, The learning rate in
the AE stage is set constant at 1e-4 for 15 epochs, as sug-
gested in the original paper [10]. The learning rate decay is
not fully specified in the original paper, we assume a decay
of 0.1 every 75 epochs, which matches the authors descrip-
tion. We use an L2-Loss, a batch size of 16, and the low
frequency 20MHz ToF-depth as input as in the original pa-
per.
CFN was investigated in two papers, we use the more recent
version [1] as reference for our experiments, which predicts
the depth directly and does not use additional filtering al-
gorithms. As no real data is available we drop the unsuper-
vised adversarial part of the training, as with our network
architecture. The original paper [1] used a fixed learning
rate of 5e-6. We investigate the static learning rates {1e-4,
1e-5, 5e-6} and also in combination with a learning rate de-
cay after {100, 150} epochs. We use a coarse-fine L1-loss
and a batch size of 4 as in the original paper [1]. The input
features for CFN are the same as for our network.
End2End predicts depths directly from raw correlations,
using a generative approach, which we also incorporate into
our trainings. The original network uses a static learning
rate of 5e-4 for 50 epochs before decaying the learning rate
linearly to zero for 100 epochs [13]. We additionally in-
vestigate using exponential learning rate decays with initial
learning rates from {5e-4, 5e-3} at decay steps from {50,
100}. We further use the combination of adversarial, total-
variation and L1-loss of the original paper. The first two
raw measurements at phase offsets 0, π/2 of the two higher
frequencies 60MHz, 70MHz are used as input.

We also investigate the influence of training on image
patches of resolution 128 × 128, as used by CFN and
End2End originally. During training we ensure that the
cropped images inside a batch are from different scenes.

We compare the resulting MAE on the validation set af-
ter tuning and using the orignal hyperparameters (vanilla):

DeepToF CFN End2End

vanilla 11.97 4.72 9.14
tuned 10.10 3.83 8.19

The hyperparameters after tuning are:
DeepToF: LR 5e-4, decay 0.1 every 100 epochs, AE pre-
training, full resolution.
CFN: LR 1e-4, decay 0.1 every 100 epochs, on patches.
End2End: 5e-4, decay: 0.1 every 100 epochs, full resolu-
tion.

Error distributions and statistical values are compared
in Fig. 3.

40 20 0 20 40
Error [cm]

DeepToF
CFN
End2End
RADU

0 20 40
Absolute Error [cm]

DeepToF
CFN
End2End
RADU

Method Median σ

DeepToF 2.27 15.61
CFN 0.42 8.80
End2End 1.72 14.97
RADU -0.28 7.64

Figure 3. Error distributions with median and standard deviation σ
of the examined networks on our Cornell-Box dataset. An optimal
distribution would be a single peak at 0. Both CFN and RADU
have a similar distribution, where the median and standard devia-
tion of CFN are slightly worse.

5.4. Kinect2 - FLAT Dataset

The FLAT dataset contains raw measurements simulat-
ing a Kinect2 camera for sinusoidal modulations at frequen-
cies at 40MHz and ∼58.8MHz, and for a non-sinusoidal
modulation at ∼30.3MHz. For each modulation three mea-
surements were performed for phase offsets with a spacing
of approximately 2π/3.

The resolution of the Kinect2 is 424× 512 which results
in 3392 points in the latent point clouds of our network. We
train our network with an initial learning rate of 1e-3 and
an exponential learning rate decay of 0.3 every 100 epochs,
and a batch size of 2. The network converged after 600
epochs.

For DeepToF we use the low frequency ToF-depth as in-
put. For CFN and our network we compute the input fea-
tures using f1 = 30.3MHz, f2 = 40MHz, f3 = 58.8MHz.
For End2End we use the first two raw measurements of the
two higher frequencies 40MHz, 58.8MHz as input.

We perform the same hyper parameter tuning as in the
previous section and achieve the following MAE on the val-
idation set:

DeepToF CFN End2End

vanilla 11.52 4.30 6.21
tuned 8.66 3.57 5.90

The hyperparameters after tuning are:
DeepToF: LR: 1e-3, decay: 0.1 every 50 epochs, combined
training, on patches.

40 20 0 20 40
Error [cm]

DeepToF
CFN
End2End
RADU

0 20 40
Absolute Error [cm]

DeepToF
CFN
End2End
RADU

Method Median σ

DeepToF 12.19 33.08
CFN 3.22 19.08
End2End 1.07 25.55
RADU -0.08 7.83

Figure 4. Error distributions with median and standard deviation
σ of the examined networks on the FLAT dataset. An optimal
distribution would be a single peak at 0.

CFN: static LR: 1e-4, on patches.
End2End: LR: 5e-4, decay: 0.1 every 100 epochs, full res-
olution.

Error distributions and statistical values are compared
in Fig. 4.
Code optimizations for FLAT dataset. The synthetic data
used for training in the FLAT dataset contains a high ratio of
background pixels, which we masked in the loss functions
during training.

When training on patches we ensure to have non-empty
images inside the batches.

As the background pixels are associated with depth 0,
they are all projected to the same point 0⃗ ∈ R3. This
introduces a heavy memory usage in 3D convolutions as
these identical points are all considered as neighbors to each
other.

To reduce the memory impact we apply a filter during
training, which drops all masked points in the 3D projec-
tion PC→G, which results in a varying number of points
per image. After the 3D block of our network the points
are projected back into 2D by ordering the points in a grid
using a sparse data format with pixel ids inferred from the
masking.

6. Ablations

We provide additional information about the ablation
from the main paper and additional ablations on the hyper-
parameter α in our RADU convolutions, the coarse-fine-
loss and on the U-DA strategy.

6.1. Ablation 1: Latent 3D Representation

For the 2D and 3D variants of our network architecture
we use the same number of features in the 3D bottleneck
block, namely [128, 256, 128]. For the 2.5D convolutions,
which performs 3 convolutions for foreground, neighbor-
hood and background, we change the feature dimensions to
[129, 258, 129] = [3 ·43, 3 ·86, 3 ·43], in order to make them
divisible by 3.

The neighborhood radii are equal for all 3D convolutions
at [0.1m, 0.2m, 0.4m], for the 2D convolutions we use pixel
neighborhoods of [3, 5, 9], which is equal to doubling the
pixel L0-distances [1, 2, 4]. For the 2.5D convolutions we
use a fixed neighborhood size of 3 pixels, as larger kernels
were too demanding in memory consumption.

We use the following additional hyperparameters for the
3D convolutions:
KPConv: 15 kernel points.
PointConv: 16 hidden units in the kernel MLP.
MCConv: 1 kernel MLP with 16 hidden units.

We train all variants with different hyperparameters and
choose the run which achieved the best validation loss. The
initial learning rate is chosen from {1e-2, 1e-3, 1e-4} and
decayed with an exponential learning rate decay with rates
{0.1, 0.3} every {50, 100, 150} epochs. The following
settings achieved the best validation MAE on S3:

type init LR decay rate decay steps

2D 1e-2 0.1 100
2.5D 1e-3 0.1 100
KPConv 1e-3 0.3 150
PointConv 1e-3 0.1 150
MCConv 1e-3 0.3 100

6.2. Ablation 2: Hyperparameter α

As discussed in the main paper the RADU layers receive
direct gradients from the coarse loss, which can increase
the risk of overfitting. We investigate the influence of the
regularization hyperparameter α of the RADU layer, and
train instances of our network, again using S1 and S3, for
different values of α, including a dynamic value choice, by
using the convolution radius αl = rl, in our case 0.1 m,
0.2 m, and 0.4 m. Results are reported in Tab. 1. While the
result indicate that a wrong choice of α yields the risk of
overfitting on the training data, we found that α = 0.1m
leads to good performance on the three datasets of the main
paper.

6.3. Ablation 3: Coarse-Fine-Loss

To investigate the influence of the coarse-fine-loss, we
train an instance of our network using only the L1-Loss
∥dgt − d̂out∥1, again using S1 for training and S3 for vali-
dation.

α Training (S1) Validation (S3)
[m] MAE [cm] MAE [cm]

0.0 8.38 2.51
0.1 7.87 2.28
0.2 7.51 2.81
1.0 6.93 3.42
r 7.48 2.45

Table 1. Influence of the hyperparameter α in the RADU convolu-
tions. We report MAE on training (synthetic) and validation (real)
data. The case α = r uses the receptive field r as scale. The value
α = 0 corresponds to a standard MCConv layer.

In this setting the number of epochs until the network
converged during training increased by 100 epochs, while
the performance on the validation set S3 decreased to a
MAE of 2.63cm, +0.35 compared to the proposed coarse-
fine-loss.

6.4. Ablation 4: U-DA Strategy

We repeat the U-DA finetuning in the real world data ex-
periment from the main paper using an adversarial setup as
proposed in other works [1, 13]. In this setting no pseudo-
labels are created, instead a discriminator network is em-
ployed to distinguish predictions on real and synthetic data.
We implement the discriminator network and U-DA algo-
rithm as described by Agresti et al. [1].

Using this setup the performance on S5 decreases to a
MAE of 2.13cm (+0.5). As with our cyclic self-training
approach we repeat the training 10 times and measure a
standard deviation of the MAE at 0.057cm on S5, which
is notably higher (+0.036) then when fine-tuning with our
proposed cyclic self-training approach using pseudo labels.

7. Implementation

All network implementations were done in
TensorFlow 2.3.0-gpu and Python 3.6. The
dataset generation was done using Python 3.6 and
the transient renderer of Jarabo et al. [8] in version
26 February 2019 - Release v1.2.

8. Qualitative Results

8.1. Cornell-Box Dataset

We show predictions for one view point per scene in
Fig. 7, 8, 9 and 10.

We further show a larger version of Figure 8 of the main
paper in Fig. 6, which shows the iterative denoising on the
latent point clouds.

ToFRADUGTGT

Figure 5. Example of flying pixel correction. Left shows the
ground truth (GT) depth image, the right images show a zoomed
in detail. The ToF image exhibits flying pixels at the object bound-
ary, which do not occur in the prediction of our RADU network.

8.2. FLAT Dataset

We show predictions for a subset of the images in the
dataset in Fig. 11 and 12.

Lastly, we show an example of the correction of the
mixed-pixel / flying pixel effect in 5.

References
[1] Gianluca Agresti, Henrik Schaefer, Piergiorgio Sartor, and

Pietro Zanuttigh. Unsupervised domain adaptation for ToF
data denoising with adversarial learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5584–5593, 2019. 3, 4, 6

[2] European Machine Vision Association et al. Standard for
characterization of image sensors and cameras. EMVA Stan-
dard, 1288, 2010. 2

[3] Mario Frank, Matthias Plaue, Holger Rapp, Ullrich Köthe,
Bernd Jähne, and Fred A Hamprecht. Theoretical and ex-
perimental error analysis of continuous-wave time-of-flight
range cameras. Optical Engineering, 48(1):013602, 2009. 1

[4] Cindy M Goral, Kenneth E Torrance, Donald P Greenberg,
and Bennett Battaile. Modeling the interaction of light be-
tween diffuse surfaces. ACM SIGGRAPH computer graph-
ics, 18(3):213–222, 1984. 2

[5] Qi Guo, Iuri Frosio, Orazio Gallo, Todd Zickler, and Jan
Kautz. Tackling 3D ToF artifacts through learning and the
FLAT dataset. In The European Conference on Computer
Vision (ECCV), September 2018. 2

[6] Miles Hansard, Seungkyu Lee, Ouk Choi, and Radu Patrice
Horaud. Time-of-flight cameras: principles, methods and
applications. Springer Science & Business Media, 2012. 1

[7] Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar
Vinacua, and Timo Ropinski. Monte carlo convolution for
learning on non-uniformly sampled point clouds. ACM
Transactions on Graphics (TOG), 37(6):1–12, 2018. 1

[8] Adrian Jarabo, Julio Marco, Adolfo Muñoz, Raul Buisan,
Wojciech Jarosz, and Diego Gutierrez. A framework for
transient rendering. ACM Transactions on Graphics (SIG-
GRAPH Asia 2014), 33(6), 2014. 2, 6

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

[10] Julio Marco, Quercus Hernandez, Adolfo Munoz, Yue Dong,
Adrian Jarabo, Min H Kim, Xin Tong, and Diego Gutierrez.

DeepToF: off-the-shelf real-time correction of multipath in-
terference in time-of-flight imaging. ACM Transactions on
Graphics (ToG), 36(6):1–12, 2017. 2, 4

[11] Markus Miller, Hongwang Xia, Mina Beshara, Susanne
Menzel, Karl Joachim Ebeling, and Rainer Michalzik.
Large-area transmission modulators for 3d time-of-flight
imaging. In Unconventional Optical Imaging II, volume
11351, page 113511F. International Society for Optics and
Photonics, 2020. 2

[12] Mary A Pagnutti, Robert E Ryan, Maxwell J Gold, Ryan
Harlan, Edward Leggett, James F Pagnutti, et al. Laying the
foundation to use raspberry pi 3 v2 camera module imagery
for scientific and engineering purposes. Journal of Electronic
Imaging, 26(1):013014, 2017. 2

[13] Shuochen Su, Felix Heide, Gordon Wetzstein, and Wolfgang
Heidrich. Deep end-to-end time-of-flight imaging. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6383–6392, 2018. 4, 6

[14] Qingnan Zhou and Alec Jacobson. Thingi10k: A
dataset of 10,000 3d-printing models. arXiv preprint
arXiv:1605.04797, 2016. 2

ToFGT OutputRADU 1-3

Depth

Depth GT
de
pt
h

er
ro
r

ToF Depth Coarse Prediction Fine Prediction

60
cm

-6
0c
m

0c
m

Figure 6. Larger version of Figure 8 in the main paper. The top row shows depth and error maps, the bottom row shows the point clouds
in 3D space. The initial ToF depth reconstruction (red) is far from the ground truth depth (blue). After each RADU convolution the
latent point clouds (orange to yellow) move closer to the correct depth. The final latent point cloud (yellow) already yields a good coarse
reconstruction of the scene, which is further refined in the 2D block of the network (green).

60
cm

-6
0
cm

0
cm

Figure 7. Results on the Cornell-Box Dataset. First row shows depths, second row shows error maps.

60
cm

-6
0
cm

0
cm

60
cm

-6
0
cm

0
cm

60
cm

-6
0
cm

0
cm

60
cm

-6
0
cm

0
cm

Figure 8. Results on the Cornell-Box Dataset. First rows show depths, second rows show error maps.

60
cm

-6
0
cm

0
cm

60
cm

-6
0
cm

0
cm

60
cm

-6
0
cm

0
cm

60
cm

-6
0
cm

0
cm

Figure 9. Results on the Cornell-Box Dataset. First rows show depths, second rows show error maps.

60
cm

-6
0
cm

0
cm

60
cm

-6
0
cm

0
cm

60
cm

-6
0
cm

0
cm

60
cm

-6
0
cm

0
cm

Figure 10. Results on the Cornell-Box Dataset. First rows show depths, second rows show error maps.

40
cm

-4
0
cm

0
cm

40
cm

-4
0
cm

0
cm

40
cm

-4
0
cm

0
cm

40
cm

-4
0
cm

0
cm

40
cm

-4
0
cm

0
cm

Figure 11. Results on the FLAT Dataset. First rows show depths, second rows show error maps.

40
cm

-4
0
cm

0
cm

40
cm

-4
0
cm

0
cm

40
cm

-4
0
cm

0
cm

40
cm

-4
0
cm

0
cm

40
cm

-4
0
cm

0
cm

Figure 12. Results on the FLAT Dataset. First rows show depths, second rows show error maps.

Figure 13. Example images showing one of the 50 view points with one of the three material configurations for each of the scenes in our
Cornell-Box dataset. We show the intensity I at a frequency of 20 MHz as given by Eq. (7).

Figure 14. Example images showing one of the 50 view points with one of the three material configurations for each of the scenes in our
Cornell-Box dataset. We show the intensity I at a frequency of 20 MHz as given by Eq. (7).

Figure 15. Example images showing one of the 50 view points with one of the three material configurations for each of the scenes in our
Cornell-Box dataset. We show the intensity I at a frequency of 20 MHz as given by Eq. (7).

	. Further Insights on ToF Working Principle
	. Extension of MC-Convolutions with RADU
	. Network Architecture - Hyperparameters
	. Cornell-Box - Dataset Generation
	. Experiments
	. Data Augmentation
	. Soft-Kinect - Datasets S1-S5
	. RaspBerry-Pi 3 - Cornell-Box Dataset
	. Kinect2 - FLAT Dataset

	. Ablations
	. Ablation 1: Latent 3D Representation
	. Ablation 2: Hyperparameter
	. Ablation 3: Coarse-Fine-Loss
	. Ablation 4: U-DA Strategy

	. Implementation
	. Qualitative Results
	. Cornell-Box Dataset
	. FLAT Dataset

