
A. Experimental setup and common design

choices

A.1. Additional details on experimental setup

We conduct all our analyses with images of the default

resolution, i.e., 224 or 299, on ImageNet models. Here we

generate high-resolution images using the cascaded diffu-

sion approach from Dhariwal et al. [10]. We first generate

64×64 size images using the first diffusion model and then

upscale them to 256× 256 resolution using the second dif-

fusion model.

For feature extraction purposes, we use pretrained net-

works from the Timm [43] library. We extract features from

the last convolutional layer for all networks. We consider

five neighbors for AvgkNN computation and twenty neigh-

bors for the local outlier factor. We use the implementation

from PyOD [46] to calculate the local outlier factor. In our

sampling process, we compute the hardness score at each

time step. To calculate the hardness score, we first extract

training data features at each timestep. Since the reverse

process starts from white noise, we find that features from

deep neural networks have extremely small variance at the

start of reverse process. This makes the hardness score, thus

gradients of the guidance loss, quite unstable at the start

of the reverse process. We circumvent this issue by using

an identity precision matrix. We use PyTorch [27] with an

Nvidia A100 GPU cluster for our experiments.

A.2. Limitations of likelihood estimate from the dif-
fusion model

It is straightforward to obtain an estimate of the likeli-

hood of a given sample using the diffusion model. When

choosing a metric to identify low-density regions, it is nat-

ural to ask whether the likelihood estimates from diffusion

models can serve as this metric. To answer this question we

calculate the negative log-likelihood (NLL) of real images

from the validation set of the ImageNet dataset. We com-

pare NLL with two commonly used metrics to measure the

density of neighborhoods (Figure 11). We find that NLL

shows poor correlation with both metrics, suggesting that it

is not an effective predictor of neighborhood density.

Limitation of exact likelihood scores. While diffusion

models only provide an approximate likelihood score, one

can obtain exact likelihood score from autoregressive or

flow-based models [14, 31]. We find that the aforemen-

tioned limitation of likelihood scores also also extend to ex-

act likelihood values. We use DenseFlow [14], which pro-

vides state-of-the-art likelihood evaluation on ImageNet.

Surprisingly, the model assigns very high likelihood val-

ues to our low-density images (Table 2), even higher than

highly photorealistic BigGAN images. We find that this ob-

servation is not limited to our synthetic samples, but a more

fundamental characteristic of likelihood scores. To high-

1 2 3 4 5
NLL

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

kN
N 

di
st

an
ce

1 2 3 4 5
NLL

1.0

1.2

1.4

1.6

1.8

Lo
ca

l o
ut

lie
r f

ac
to

r

Figure 11. Is NLL an effective measure of neighborhood den-

sity? We compare the negative log-likelihood (NLL) estimates

from the diffusion model with other commonly used metrics to

measure data density. We find that NLL is poorly correlated with

both of these metrics. Since NLL is computationally expensive

to calculate for each image, we use 2K random images from the

validation set of the ImageNet dataset for this analysis.

light it, we consider low-density real images that are poorly

represented in training dataset, such such as sketches [41],

renditions [15], and near-distribution images (ImageNet-

O [16]).

Similar to our low-density samples, DenseFlow assigns

very high likelihood scores to all three novel variations of

data (Table 2). Such variations (e.g., sketches) are rarely

present in training data. Despite that, the model assigns

a high likelihood to them. We also provide a qualitative

comparison in Figure 12. Our observation is similar to

the failure of exact likelihood scores on out-of-distribution

data [25].

Table 2. Quantitative evaluation. State-of-the-art negative log-

likelihood (NLL) evaluation using DenseFlow [14]. Lower value

implies higher likelihood.

Dataset Real BigGAN
DDPM

(baseline)

DDPM

(ours)
Rendition Sketch ImageNet-O

NLL 3.4 3.1 3.3 2.8 2.5 1.2 2.9

Figure 12. Qualitative comparison. Top row (baseline sampling)

vs Bottom row (our sampling). Flow-based model surprisingly as-

signs much higher likelihood to our novel instances (lower value

is higher).

A.3. Higher hardness score implies lower neighbor-
hood density

In our sampling process, we maximize the hardness

score of synthetic data. We argued that hardness score is

a proxy to neighborhood density, thus maximizing it forces

the model to generate low density samples. We provided the



(a) Visualizing images across the hardness scores axis for each class. Ha refers to the ath percentile of hardness score. Classes are: goldfinch, water tower, container ship,

hourglass, monarch butterfly, tiger beetle, zebra, and tennis ball.

(b) Correlation of hardness score with other metrics.

Figure 13. Validating the effectiveness of hardness score. To validate whether hardness score is a good proxy for neighborhood density,

we first visualize images with increasing hardness scores and next show that it correlates with commonly used metrics to measure data

density.

validation of its success in Figure 7. Now we delve deeper

into why hardness score acts as a proxy to neighborhood

density.

First we visualize real images across the spectrum of

hardness score. Give a class index in the ImageNet vali-

dation set, we visualize its samples with lowest, moderate,

and highest hardness scores (Figure 13a). From these im-

ages, it is evident that the difficulty of individual instances

increases with hardness scores. We also look into the cor-

relation of hardness score with other known density metrics

(Figure 13b). We find that hardness score also have a posi-

tive correlation with other metrics.



0.00

0.007

0.015

D
e
n
s
it
y

feature space
t = 1.0

0.0 0.1 0.25 1.0

softmax probs
t = 1.0

0.0 0.01 0.025 0.1

t = 0.5 t = 0.5

100 150 200 250 300

Hardness score

t = 0.1

100 150 200 250 300

Hardness score

t = 0.1

0.00

0.007

0.015

D
e
n
s
it
y

0.00

0.007

0.015

D
e
n
s
it
y

Figure 14. Choice of loss function. Loss function in feature space

vs. in logits space.

A.4. Motivation to normalize gradients

Slightly different from the classifier guidance approach

in Dhariwal et al. [10], we normalize classifier gradients

before using them in the sampling process. We do so since

it makes the scale of hyperparameters (α and β) indepen-

dent of the magnitude of gradients of guiding losses (Lg1

and Lg2 ). In particular, we observed that the magnitude of

gradients in the diffusion process is often quite small, thus

needing a very high scaling parameter. In addition, the mag-

nitude of gradients also fluctuates with timesteps of the sam-

pling process, thus potentially requiring a different scaling

parameter at different timesteps. We normalize gradients to

have unit ℓ∞ norm, which ensures a consistent magnitude

of gradients across timesteps. Thus normalization isolates

the choice of scaling hyperparameters from gradients mag-

nitude, making this choice much simpler.

A.5. Effect of different guiding loss functions

In our sampling process, our objective is to push syn-

thetic images away from high-density neighborhoods. We

achieve it by using a softmax-based loss function in the fea-

ture space of a pre-trained classifier. However, an equivalent

loss function can be derived using softmax probabilities at

the logit layer. Though both loss functions require a differ-

ent scale of hyperparameters, they achieve similar results

under properly calibrated scales (Figure 14). We make use

of feature space because multiple additional metrics to mea-

sure density, such as kNN distance and local outlier factor,

can be also easily calculated in the feature space.

A.6. Limitation of class embeddings smoothing

Previously, Li et al. [23] showed that one can manipulate

class-embeddings of a pre-trained BigGAN model to im-

prove the diversity of generated images. When approaching

the task of low-density sampling, it is natural to test whether

it can be achieved by simply controlling class embeddings.

To test the effect of class-embeddings, we smooth class em-

beddings for a diffusion model on the ImageNet dataset.

The network is trained with one-hot encoded class embed-

dings. When sampling, we smooth the embeddings by re-

ducing the correct class probability to ymax and distribute

the rest of the probability mass equally over all remaining

classes. We find that the quality of synthetic images de-

grade very quickly with a reduction in ymax (Figure 15).

Given this detrimental effect of smoothing in class embed-

dings, we chose to modify the sampling process itself, since

the latter provides a much better control and quality of syn-

thetic images.

A.7. Integration with fast sampling techniques

In the main paper, we discussed that with fast sampling

approaches, our approach enjoys a similar trade-off as base-

line sampling process. To support this claim, we provide a

comparison of synthetic images sampled using DDIM [37]

sampling process from both baseline and our sampling pro-

cess in figure 16. We integrate the guiding loss in the

DDIM sampling process in a similar manner as Dhariwal et

al. [10].

B. Experimental results

B.1. Neighborhood density with different feature
extractors

We use a ResNet-50 classifier, which is pretrained on

ImageNet dataset, as feature extractor. Though this is very

common choice of deep neural network, we further inves-

tigate whether our claims are robust to the choice of the

feature extractors. To test it, we consider two more deep

neural networks, namely Inception-V3 [40] and VGG [35].

We measure the neighborhood density in the feature space

of both classifier and show that both classifier further vali-

date the success of our approach (Figure 17).

B.2. Additional nearest neighbor pairs for visual-
ization

To analyze whether the diffusion model is simply mem-

orizing training data, we visualize the nearest neighbors of

each synthetic image from the real images. We synthe-

size the synthetic images using our sampling process. To

complement the top-16 synthetic and real images with the

smallest pairwise distance in Figure 8, we present the next

64 pairs in Figure 18. In each pair, the left and right im-

ages corresponds to the synthetic and real image, respec-

tively. For completeness, we also analyze nearest neigh-

bors in pixel space (Figure 19). As expected, euclidean dis-

tance in pixel space doesn’t correspond to semantic simi-

larity between images and it is often highly biased toward



y m
ax

 =
 1

.0
y m

ax
 =

 0
.9

0
y m

ax
 =

 0
.8

0
y m

ax
 =

 0
.7

Figure 15. Smoothing of class embeddings. Demonstrating how smoothing of class embeddings leads to poor quality synthetic images

with diffusion models.

(a) T = 10 (b) T = 20 (c) T = 50

Figure 16. Fast sampling. We integrate our guiding objective in

the fast DDIM sampling process [37]. Top two rows correspond

to the baseline DDIM sampling approach while bottom two corre-

spond to our approach. We use the identical starting latent vectors

for both approaches and across the three choices of the number of

sampling steps.

background similarities between synthetic and real images.

B.3. Comparing our samples with baseline sam-
pling process

We present additional images to compare the baseline

and our sampling process in figure 20 and 21.



0.00 0.25 0.50 0.75
Average kNN distance

0

2

4

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

0.9 1.0 1.1 1.2
LOF

0

5

10

15

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

(a) Inception-v3

0.00 0.25 0.50 0.75 1.00
Average kNN distance

0

1

2

3

4

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

0.9 1.0 1.1 1.2
LOF

0

5

10

De
ns

ity

BigGAN
Real

DDPM (baseline)
DDPM (ours)

(b) VGG19

Figure 17. Comparing neighborhood density across different choices of feature extractors. We use two additional feature extractors,

namely Inception-v3 and VGG19.

Figure 18. Nearest neighbour pairs of real and synthetic data with lowest pairwise distance. In each pair, the left and right image correspond

to the synthetic and real image, respectively.



Figure 19. Nearest neighbour pairs of real and synthetic data with lowest pairwise distance in pixel space. In each pair, the left and right

image correspond to the synthetic and real image, respectively.



Figure 20. Synthetic images from the baseline sampling process (left) and our approach (right) for each class on the CIFAR-10 dataset.

We use identical random seed for both approaches.



(a) ImageNet (class 0 and 7) (b) ImageNet (class 73) and CIFAR-10 (c) ImageNet (class 73) and CIFAR-10

Figure 21. Synthetic images from the baseline sampling process (bottom) and our approach (top) for few classes on the ImageNet dataset.

We use identical random seed for both approaches.


	. Experimental setup and common design choices
	. Additional details on experimental setup
	. Limitations of likelihood estimate from the diffusion model
	. Higher hardness score implies lower neighborhood density
	. Motivation to normalize gradients
	. Effect of different guiding loss functions
	. Limitation of class embeddings smoothing
	. Integration with fast sampling techniques

	. Experimental results
	. Neighborhood density with different feature extractors
	. Additional nearest neighbor pairs for visualization
	. Comparing our samples with baseline sampling process


