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Figure 1. Our desk-based rig and sample frames from eight RGB and four monochrome cameras.
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Figure 2. Our annotation tool interface. Right panel: input video composed of three static camera views and a diagram of the objects.
Middle panel: pre-defined lists of verbs, tools and objects for labelling segments. The annotators also have the flexibility for free-form
entry. Bottom bar: this annotation bar shows the temporal boundaries of the actions, i.e., the start and end of each action. Left panel: list

of temporally annotated actions.

This supplementary further details recording settings,
annotations and experiments.  Section 1 provides an
overview of annotator training, our recordings and custom
interface. Section 2 provides the distributions of our la-
bels, detailed train/validation/test statistics, and an exten-
sive set of comparisons with other related datasets. Sec-
tion 3 presents the architecture and implementation details
of our baselines. Finally, in Section 4, we present more re-
sults and comparisons on our baselines.

1. Recording and Annotation
1.1. Recording rig

We built a dedicated desk-based rig to capture the se-
quences in this dataset. Each sequence is recorded with
eight RGB cameras at 1920 x 1080 resolution and four
monochrome cameras at 640 x 480 resolution. Fig. 1 shows
individual camera views and sample frames.

1.2. Participants

We recruited 53 adult participants (28 males, 25 females)
to record approximately one-hour sessions over the course
of 18 consecutive days. Participants were recruited con-
sidering the guidelines and restrictions of COVID-19, in-
cluding wearing face masks. We obtained informed con-
sent of camera wearers for the digital capture of partici-
pants, which means digitally capturing participants’ faces

and bodies. All video footage and collected annotations are
available for the research community.

1.3. Annotations

Annotation interface: We developed a custom interface
(see Fig. 2) for annotators to temporally locate the start-
and end-frames of fine-grained action segments. Each ac-
tion segment is tagged with predefined verbs, tools and ob-
jects, though annotators also have the flexibility for free-
form entry. To promote precise annotations, we displayed
three static camera views to ensure that the actions are vis-
ible at least from one view without self-occlusion from the
working hand. Additionally, we provided diagrams for the
annotators with labelled objects of all 101 toys to ensure
correct naming and terminology. While working with the
toys, the participants were requested to simultaneously de-
scribe out loud their actions with named tools and objects,
e.g. “I am flipping the truck over and putting the right front
wheel on the truck”. To assist with the description, the com-
pleted toy in the reference diagrams are labelled with part
names.

Annotator training: To ensure high-quality labels, we
trained annotators over the course of four days. During this
time, the annotators were introduced to our interface and the
labelling task under the authors’ guidance. After training,
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Figure 3. We define 90 objects (upper) and specify 24 verbs (bottom), forming a total of 1380 fine-grained action labels. The verb
distribution also shows the number of actions containing that verb on top of each bar.

annotators who were slow or made many mistakes were not
selected to continue. Following the training, the labelling
was completed by 21 annotators over 213 hours of work.

2. Dataset Statistics & Splits

2.1. Fine-grained actions

From our 15 toy categories, we define 90 unique objects.
Additionally, we define 24 verbs. Six of the 24 verbs are
used to describe “attempts”, i.e. the participants adjust or
change their minds during assembly. For example, the “pick
up chassis” action is composed of three stages of reaching
for the chassis, grasping it, and lifting it up. Our annotators
were provided with the stages of each verb. When users do
not complete all stages in a segment, e.g. approach and/or
grasp the chassis but do not lift it, we asked our annotators
to place “attempt to” in front of the action. The objects
and verbs combined form a total of 1380 fine-grained action
labels as not every possible combination is observed. We
present the distribution of our verbs and objects in Fig. 3.

To highlight the scale of our dataset, we compare As-
sembly101 to other video datasets for action recognition in

Table 1. Our dataset is the largest in number of segments
and the richest in terms of multi-view recordings both from
third-person and egocentric views.

Balancing the head: The objects, verbs, and fine-grained
action labels each naturally form a long-tailed distribu-
tion [33]. When reviewing Meccano and IKEA, we observe
that a handful of head-classes dominate the action distribu-
tion (60% of actions belong to 3 head classes in IKEA, and
30% in Meccano). To mitigate similar effects, we made two
labelling design choices concerning the wheels, screws and
tools, as they are the most commonly occurring object parts.
The adjustments spread the head-tail distribution (the top 3
classes account for only 13% of the action segments) and
add semantic richness to the dataset:

¢ Enumerating the wheels:, i.e. “position first wheel”
vs. the generic “position wheel” action. Enumeration
also extends the range of temporal dependencies in a
sequence, as algorithms must keep track of how many
wheels have been attached or removed.



* Fine-grained tool and screw verbs: Due to the na-
ture of the assembly task, tools and screws appear very
frequently. To spread the head classes that result from
treating tools and screws as simple objects or parts, we
introduced dedicated verbs, e.g. “screw [object] with
drill”, “position screw on [object]” and “remove screw
from [object]”. Coupling these verbs with other ob-
jects conveys more information than “screw chassis”
or “position screw”.

2.2. Coarse actions

Each coarse action is defined by the assembly or disas-
sembly of a vehicle part. There are 202 coarse actions com-
posed of 11 verbs and 61 objects. Each video sequence fea-
tures an average of 24 coarse actions. There is an average
of 10 fine-grained actions per coarse action segment. The
average number of coarse actions is 14 in each assembly se-
quence and 10 in each disassembly sequence. Table 2 com-
pares Assemblyl101 with other video datasets with coarse
labels. Our dataset is the largest in video hours and number
of segments, and the only non-cooking recorded dataset.

2.3. 3D hand poses

Action recognition from 3D hand poses is much less ex-
plored compared to the full human body. The only existing
datasets [10, 16] that focus on hand-object action recogni-
tion with 3D hand pose annotations are small-scale and/or
include only a single hand [10]. We present our compar-
isons in Table 3. Compared with FPHA [10] and H20 [16],
our dataset includes 82x more action segments and 200X
more frames. We also compare the scale of our dataset with
NTU RGB+D 60 [29] and NTU RGB+D 120 [20], which
are the largest full-body pose dataset. Our dataset contains
6-12x more action classes and 27-13x more frames. Addi-
tionally, NTU RGB+D 60 and NTU RGB+D 120 are com-
posed of short trimmed clips of actions while our segments
are related to each other with sequence dynamics, which
allows for studying the importance of temporal context for
action recognition.

2.4. Training, validation & test splits

We use a 60/15/25 split of recordings for dividing our
dataset into training, validation and test splits, with detailed
statistics presented in Table 5. We present the distribution
of the mistake action in Table 4.

For evaluation purposes, we will hold out the ground
truth annotations of the test split. These will be used for
online challenge leaderboards to track future progress on
our target tasks. Our dataset is designed to assess the gener-
alizability to new toys, actions and the participants’ skills.
We thus structured our validation and test sets to examine
models under varying conditions.

Seen/Unseen vehicles/toys: Of the 101 toys, only 25 toys
are shared across all the three splits. We designed the splits
to ensure that there are unseen toys in the training to facil-
itate zero-shot learning. There are 20 and 16 unseen toy
instances in the validation and test splits, respectively.

Head vs. tail classes: The distribution of our objects
and verbs can be seen in Figure 3. There is a large num-
ber of common manipulation verbs such as “pick up” and
“put down”, which naturally depicts a long tail distribu-
tion. The object and action distribution follow the same
general trend. We define the tail classes as the set of ac-
tion classes whose instances account for 30% of the train-
ing data. This amounts to 1238 (89%) tail action classes.
We used Epic-Kitchens as a reference when forming our
tail classes, where 87% of the action classes are in the tail.
Similarly, we define the tail classes of the coarse labels as
the set of coarse action classes whose instances account for
30% of the training data. This amounts 171 (84%) tail ac-
tion classes.

55 (47%)
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Figure 4. The distribution of skill level of the participants from 1
(the worst) to 5 (the best). Overall, 9% of the sequences are from
the participants with the worst skill level and 47% is from the best.
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‘tr’, ‘v’ and ‘t’ stand for the training, validation and test splits.

Skill level assessment is a critical task in many areas includ-
ing sports [22], robot learning [35], surgery [38] and assem-
bly line [24]. Which participant has the highest assembly
skills? How are the participants progressing with more as-
sembly tasks? What are the common mistakes made by par-
ticipants? Answering these questions involves determining
how well the assembly was carried out. Thus, we annotated
the skill levels of the participant in each video from 1 (the
worst) to 5 (the best). Skill level criteria is based on the
participant’s assembly speed and number of mistakes, with
coarse thresholds. Overall, the distribution of skill labels
in our sequences is 9%, 6%, 13%, 25% and 47% from the
worst to the best (see Fig. 4).



Table 1. Comparison with other video datasets for action recognition on fine-grained actions.

Dataset total # # # multi- #pose

hours videos segments actions recorded view egocentric annotation year
MPII [27] 8.3 44 5,609 64 v X X v 2012
ActivityNet [3] 648.0 27811 23,064 200 X X X X 2015
Charades [32] 81.1 9,848 67,000 157 4 X X X 2016
THUMOS [13] 30.0 5,613 6,310 101 X X X X 2017
Charades-EGO [31] 68.8 2,751 30,516 157 v v v X 2018
EPIC-100 [5] 100.0 700 89,977 4053 v X v X 2020
H20 [16] 55 186 934 11 v v v v 2021
Meccano [26] 6.9 20 8,858 61 v X v X 2021
IKEAASM [2] 35.0 371 17,577 33 v v X v 2021
Ego4D [11] 120.0 - 77,002 - v X v X 2021
Assembly101 513.0 4,321 1,013,523 1380 v v v v 2021

Table 2. Coarse action label dataset comparisons.

Dataset hours #videos #segments #actions \ #irecorded #multi-view #egocentric #cooking #year
GTEA [7] 0.4 28 500 71 4 X v v 2011
50Salads [36] 4.5 50 899 17 4 X X v 2013
Breakfast [15] 77.0 1,712 11,300 48 4 4 X v 2014
YouTube Instructional [1] 7.0 150 1,260 47 X X X X 2016
COIN [37] 476.0 11,800 46,000 778 X X X X 2019
CrossTask [41] 374.0 4,700 34,000 107 X X X v 2019
YouCooklI [40] 176.0 2,000 15,400 - X X X v 2018
Assembly101 513.0 4,321 104,759 202 ‘ v 4 v X 2021

Table 3. Comparisons with other datasets with 3D hand pose.

Dataset Hours #frames #segments #actions
NTU RGB+D 60 [29] - 4.0M 56K 60
NTU RGB+D 120 [20] - 8.0M 114K 120
FPHA [10] 1.0h  0.IM 1K 45
H20[16] 55h  0.5M 1K 36
Assembly101 513.0h 110.0M 86K 1380

Table 4. The distribution of { “correct”, “mistake”, “correction”}
segments on the coarse segments of the assembly sequences.

#correct #mistake #correction

Test 12,337 3,144 1,268
Validation 8,984 1,624 640
Train 25,718 4,941 2,226
Overall 47,039 9,709 4,134

3. Implementation Details

We define four action challenges: recognition, anticipa-
tion, temporal segmentation, and mistake recognition.

3.1. Action recognition

3.1.1 Appearance-based action recognition

Top-performing video-based action recognition mod-
els [4, 8] are typically extensions of state-of-the-art
image-based architectures [12]. Some works extend
convolution and pooling to the time dimension [4, &];
others perform channel shifting [0, 18] to capture temporal
relationships while maintaining the complexity of a 2D
CNN. We adopted a state-of-the-art model, TSM [18], as
the baseline for this task.

Implementation details: We use two versions of the stan-
dard TSM architecture with a ResNet-50 [12] backbone —
one with a single classifier head for predicting the actions
and another with two classifier heads for predicting the ob-
jects and verbs separately. Both models are trained using
stochastic gradient descent (SGD) with a momentum of 0.9,
weight decay of 0.0005, and dropout of 0.5 for 50 epochs
with a batch size of 64. The learning rate is initialized as
0.001 and decayed by a factor of 10 at epochs 20 and 40.
The best-performing model is selected via early-stopping
over the validation set. Sampling and augmentation during
training and inference for TSM is done following [5].



Table 5. Statistics of Assembly101 and its Train/Validation/Test splits.

. . #unseen #shared #fine #fine  #fine #fine #coarse #coarse #coarse #Hcoarse
Split Hours #videos . . . .

toys toys segments verbs objects actions | segments verbs objects actions

Train 287.6 2526 40 26 566,855 24 85 1244 57,657 11 59 195

Validation 96.6 740 16 18 186,788 24 81 1018 19,008 10 56 164

Test 128.8 1055 20 20 259,880 24 79 1045 28,094 11 55 172

Overall 513.0 4321 \ 76 25 \ 1,013,523 24 90 1380 \ 104,759 11 61 202

3.1.2 Pose-based action recognition:

State-of-the-art methods for recognizing skeleton-based
actions are based on deep architectures such as CNNs [19],
transformers [25] and graph convolutional networks
(GCN) [21, 39]. We use two state-of-the-art GCN-based
methods for our experiment, 2s-AGCN [30] and MS-
G3D [21].

Implementation details: We use the publicly available Py-
Torch [23] code for 2s-AGCN and MS-G3D. All hand pose
sequences are padded to T = 200 frames by replaying the
action segments. If there is one hand missing, we pad the
second hand with 0. No data augmentation is used.

We trained 2s-AGCN [30] using SGD with Nesterov mo-
mentum of 0.9 and a learning rate of 0.1 with a batch size
of 32 for 30 epochs. The weight decay is set to 0.0001. For
MS-G3D [21], we used SGD with a momentum of 0.9 and
a learning rate of 0.05. We set the batch size to 16 and the
weight decay to 0.0005. The model is trained for 50 epochs.

3.2. Action anticipation

In our experiments, the anticipation task is defined
as predicting the upcoming fine-level actions [ second
before they start. We adopted TempAgg [28] as baseline
for this task. Similar to previous works [5, 9], we report
class-mean Top-5 recall as it accounts for uncertainty in
future predictions.

Implementation details: We use the TempAgg with three
classification heads that predicts objects, verbs and actions
separately. Since TempAgg operates on frame features, we
use the 2-D backbone of the TSM fine-tuned on our dataset
to extract the 2048-D frame features. The spanning past
snippet features are computed over a period of 6 seconds
before the start of the action and aggregated at 3 tempo-
ral scales K = {5, 3,2}. The recent past snippet features
are computed over a period of {1.6,1.2,0.8,0.4} before the
start of the action and aggregated over a single temporal
scale Kp = 2. The model is trained using an Adam [14]
optimizer for 15 epochs with a batch size of 32. A dropout
factor of 0.3 is used. The learning rate initialised as 0.0001
and decayed by a factor of 10 after the 10" epoch.

3.3. Temporal action segmentation

For temporal action segmentation, we apply two compet-

ing state-of-the-art temporal convolutional networks: MS-
TCN++ [17], which maintains a fixed temporal resolu-
tion in its feed-forward structure with successively larger
kernel dilation, and C2F-TCN [34], a U-net-style shrink-
then-expand encoder-decoder architecture. For C2F-TCN,
we use implicit ensembling of decoder layers and the fea-
ture augmentation strategy detailed in the paper. Perfor-
mance is evaluated by mean frame-wise accuracy (MoF).
Since longer actions dominate this score and it does not pe-
nalize over-segmentation errors explicitly, we also report
segment-wise edit distance (Edit) and F1 scores at over-
lapping thresholds of 10%, 25%, and 50%, denoted as by
F1@10, 25, 50.
Implementation details: For both C2F-TCN [34] and MS-
TCN++ [17], we use an Adam [14] optimizer with a batch
size of 20 for a maximum of 200 epochs while using early-
stopping to select the model that best fits the validation
data. Loss functions used for both models are frame-wise
cross entropy loss weighted with 1 and mean-square error
loss [17] weighted with 0.17. For MS-TCN++, we use a
learning of 0.0005 and a weight decay of 0. For C2F-TCN,
we use a learning rate of 0.001 and weight decay of 0.0001.
The base window for feature augmentation sampling is set
to be 20 and all layers of decoder are included in ensem-
bling.

3.4. Mistake detection

We introduce the new problem of mistake detection in
assembly videos. We adopted TempAgg [28] as the base-
line for this task, which captures long-range relationships
that span an order of several minutes successfully.

Implementation details: We modified the TempAgg
model to capture even longer-range relationships. More
precisely, the spanning past snippet features are computed
over a period of 60 seconds around the action segment, i.e.,
[s — 60,e + 60], aggregated at 3 temporal scales K =
{5, 3,2}, where s and e are the start and end timestamps
of the action in seconds. The recent past snippet features
are computed over a period of {3.0,2.0,1.0,0.0} around
the action segment and aggregated over a single temporal



Table 6. Action recognition on fine-grained actions evaluated by Top-5 accuracy.

‘ Overall ‘ Head ‘ Tail ‘ Seen Toys ‘ Unseen Toys
Task Testedon | verb object action | verb object action | verb object action | verb object action | verb object action
Fixed 912 770 633| 938 896 780 | 849 458 264 | 90.8 848 68.6| 914 746 61.6
Recognition Egocentric | 82.7 643 443 | 8.0 79.1 578 | 746 274 108 | 835 67.8 463 | 825 632 437
Fixed & Ego.| 88.5 729 57.1| 912 862 714 | 816 398 213 | 84 792 61.2| 8.5 709 558

Table 7. Action recognition & anticipation performance on fine-level actions (evaluate by Top-1 acc. and Top-5 recall respectively) using
TSM and TempAgg respectively. “Fusion” corresponds to average-pooling the scores from multiple views.

\ Overall \ Head \ Tail | Seen Toys | Unseen Toys
‘verb object act. ‘verb object act. ‘Verb object act. ‘Verb object act. ‘Verb object act.
Recognition Overall | 58.5 452 340|637 572 446|453 151 7.3 |57.8 489 359|587 440 333
Fusion | 71.6 59.0 48.0|774 744 632|570 209 104 |71.0 647 512|718 572 469
Anticipation Overall | 55.1 294 88 | 585 553 28.0|51.6 29.1 53 |543 435 139|553 228 73
Fusion | 59.2 313 9.1 | 626 623 348|555 303 45 |583 483 157|594 234 78
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an Adam [!4] optimizer for 15 epochs with a batch size of
32 and a dropout of 0.3 on a single GPU. The learning rate
initialised as 0.0001 decayed by a factor of 10 after the 10"
epoch. Due to the imbalanced class distribution, we used a
weighted cross-entropy loss to penalize the model more for
misclassifying “mistake” and “correction” classes.

4. Results
4.1. Action recognition & anticipation

In Table 6, we provide Top-5 accuracy for action recog-
nition. We compare our “Overall” performance with results
obtained by fusing scores from multiple views on recog-
nition and anticipation in Table 7. The fusion increases
the performance of recognition significantly, while the im-
provement is smaller for anticipation.

Figure 6. Action recognition object and verb recall.

4.2. Skill level

We did not observe a significant difference across skill
levels for action recognition and anticipation tasks. A rea-
son could be that those tasks are trained on fine-level labels
while skill is more relevant for coarse actions.

4.3. Toy categories

Figure 5 shows the accuracy of action recognition and
temporal action segmentation models for each toy category.
The toy with the highest score is “transporter”. Although
we have only 4 toys in “transporter” category, there are 22
participants recording these toys. We think its high perfor-



mance could be due to the large number of recordings.

4.4. Class-based evaluations

Fine-grained actions. We present the recall of the objects
and verbs for action recognition in Fig. 6. The verbs with
the highest recall are “clap”, “pick up” and “put down”,
while the tail verbs involving “attempt to” have the lowest
recall. We also present the top 24 object classes in Fig. 6.
It can be seen that enumerated wheels are among the top
classes.

Coarse actions. Based on the temporal action segmen-
tation results, we further investigated the performance of
verbs and objects. Out of 11 coarse verbs, the verbs with
the highest recall are “demonstrate”, “attach” and “detach”,
and the ones with the lowest recall are “position”, “remove”
and “attempt to screw”, which are the tail verbs. The objects
with the highest recall are “chassis” and “interior”, which

are the most common objects across toys.
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