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1. DENDI

The details of data annotation for the DENDI dataset are
described in this section. To identify symmetry, we dis-
regard texture and focus just on the shape of the object.
The partial occlusion of boundary of symmetric object is
allowed to a fourth of the object boundaries. For both re-
flection and rotation symmetries, we exhaustively mark all
symmetries in an image, including those of parts. This pol-
icy ensures that the DENDI contains dense annotations. we
present some examples in Fig.1(d) and Fig.2(d).

1.1. Reflection symmetry

A reflection symmetry axis is drawn as a line following
the previous datasets [2,4,5,7,9]. The notable examples are
shown in Fig.1(a). We annotate all reflection symmetry
axes in an object, including non-dominant ones. Different
from the existing datasets, we account for a circular object,
which has an infinite number of reflection symmetry axes.
Instead of an infinite number of symmetry axes to represent
a circular object, we use a ’4’-shaped label consisting of
5 points which are then converted to a circular mask, as
shown in Fig.1(b). Note that a semantically circular object
that seems to be an ellipse due to viewpoint variants is also
annotated with a ’4’-shaped label, as show in the first tow
rows in Fig.1(c). Likewise, a skewed regular polygon due
to perspective variations has the same reflection axis as a
non-skewed regular polygon, as shown in the last two rows
in Fig.1(c), e.g., a regular STOP sign and a skewed STOP
sign that are both semantically regular octagon have eight
reflection symmetry axes.

Furthermore, we annotate symmetry in characters such
as A, B, C, D, E, H, I, K, M, O, T, U, V, W, X, and Y, as
well as the numbers 0, 1, 2, 5, and 8, except for those that
are too thin or indistinct. We also annotate symmetry in
the D-shaped part of characters, such as P and R. If multi-
ple symmetry axes are overlapped, only the longest one is
saved.

1.2. Rotation symmetry

For each object with rotation symmetry, we collect the
coordinate of the rotation center, the boundary of the object,
and the number of the rotation folds (N). We again employ
the ’4’-shaped labels to denote circular or elliptical objects
as shown in Fig.2(a). The semantically circular object also
features an infinite number of rotation folds, indicated as 0
for simplicity, in addition to the ’4’-shaped labels. Simi-
lar to reflection symmetry, an semantically circular object
with elliptical shape due to viewpoint variants has a rota-
tion fold of 2, e.g., the third and fourth rows in Fig.2(a).
The minor axis takes precedence over the major axis when
drawing ’4’-shaped labels for elliptical objects. The rota-
tion fold of a circular object, in particular, can be greater
than 2 if the object contains cyclic symmetry. In the case of
a non-circular object with rotation symmetry such as Fig.2
(c), we draw a convex polygon starting from the center of
the object and following convex vertices. The vertex near-
est to 12 o’clock takes priority among the convex vertices.
Likewise, in the reflection symmetry dataset, symmetry in
characters such as H, I, N, O, S, X, and Z, as well as the
numbers 0 and 8, are taken into account.

2. EquiSym

The details that are omitted in the main paper are covered
in this section. We show the consistency of the evaluation
schemes. The implementation details are also shown in the
following.

2.1. Evaluation scheme

In the main paper, we propose to use a modified evalua-
tion scheme of blurring the ground truth rather than thinning
the prediction. The primary reason is that the thinning pro-
cess transforms a circular mask prediction into a single dot.
The pixel matching algorithm determines whether the pre-
dicted lines are close enough to the ground truth lines within
a threshold, which becomes equivalent when the ground
truth itself is blurred with a radius of a threshold. In prac-
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(a) multiple symmetry axes (b) circular objects (c) skewed objects (d) dense symmetry axes

Figure 1. Illustration of the examples in the reflection symmetry dataset. The samples with (a) multiple symmetry axes, (b) circular
objects, (c) skewed objects, and (d) dense symmetry axes are shown in the figure. Green lines indicate the reflection axes and the yellow
lines indicate the ’4’-shaped reflection circle annotation. The reflection-circle annotations are then converted to masks.

method
train dataset test dataset

mixed
real synth SDRW LDRS

PMCNet [9]
X N/A N/A

46.6
X X 51.1 33.7

EquiSym-ref
X 49.8 36.5 58.0
X X 49.2 34.9

Table 1. Comparison of the reflection symmetry detection meth-
ods on the LDRS [9] and SDRW [7]. Note that the real dataset
consists of SDRW, LDRS, and NYU [2] dataset and synthetic
images generated as in [9].

tice, we construct a filter of the kernel 11 × 11 where the
weights are set to 1 for a circle of a diameter 11 and 0
otherwise. We convolve the ground-truth heatmap of both

symmetries with the filter so the heatmap is dilated to the
maximum distance of 5 pixels. The true positives are then
computed by pixel-wise comparisons. We re-evaluate the
experiments of Tab. 3 of the main paper in Tab.1. Note
that one experiment from PMCNet [9] is excluded since the
trained model is not accessible. As shown in Tab.1, the
rankings produced by the two evaluation schemes are con-
sistent, while the latter is significantly faster.

2.2. Implementation details

Construction of the orientation labels. EquiSym uti-
lizes the intermediate tasks to increase the accuracy of the
symmetry detection tasks. In the case of reflection sym-
metry, the intermediate labels of the orientations of the re-
flection axes are obtained for free. The angle of the reflec-



(a) circular objects (c)Polygons (d) dense symmetries(b) circular object with 
non-zero fold

Figure 2. Illustration of the examples in the rotation symmetry dataset. The samples with (a) circular objects, (b) circular objects with folds
larger than 2, (c) polygons, and (d) dense symmetries are shown in the figure. Green lines indicate the circular annotations and the yellow
polygons indicate the polygon-type annotations. Only the center coordinates are used for evaluation.

tion symmetry axis in the form of a straight line can be ex-
pressed as a linear combination of the closest one or two an-
gles among the 8 predetermined angles, which is an initial
soft label. On the other hand, the circle-shaped symmetry
axis has an evenly divided orientation label of 8 segments
determined by the orientation of the line crossing the center.
The orientation label is then quantized for training.

ImageNet pretrain. To be consistent with experiments
on the vanilla ResNet [6] pre-trained on ImageNet [3], we
pretrain the ReResNet50 on ImageNet-1K for the image
classification. While ReResNet50 from ReDet is imple-
mented with C8 group, we use D8 group instead. Fur-
thermore, we adjust the stride and dilation of each layer in
ReResNet50 to obtain a higher resolution feature map with

a larger receptive field than the original one, which is a com-
mon procedure in the semantic segmentation [1]. The learn-
ing rate starts at 0.1 and decreases by 0.1 every 30 epochs,
for a total of 100 epochs. We use a batch size of 512. The
pretrained ReResNet50 achieves 69.06% top-1 and 87.25%
top-5 accuracy on the ImageNet val.

Implementation details. Following [9], The hyperpa-
rameters α and β of the focal loss are set to 0.95 and 2,
respectively. For training, we resize input images so that
the maximum length of the width or the height is 417. The
background weight w of Lcls is set to 0.01 and 0.001 for
reflection and rotation symmetries. We use the PyTorch [8]
and e2cnn [10] framework to build our model.
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