DoubleField: Bridging the Neural Surface and Radiance Fields for High-fidelity
Human Reconstruction and Rendering
Supplementary Material

1. More Implementation Details
1.1. Surface-guided Sampling

The surface-guided sampling strategy will determine the
intersection points in the surface field at first and then per-
form fine-grained sampling around the intersected surface.
Specifically, given camera parameters of the rendering view
and the ray r = o + td, a uniform sampling is firstly applied
along the ray in the depth bounds [t,,,]

(=Dt =t) , | ilty—tn)

ti ~ tn 3
Ultn+], ,

(1

where NV, is the number of sampling points, and each point is
formulated as ©; = o-+t;d. We query the surface field value
of each point and determine the first intersection position %,
on the surface:

t. = min {t;|o(x;) > 0.5} . (2)

The intersection positions are then used to guide the sam-
pling at a more fine-grained level by considering the radiance
field surrounding the intersected surface:

N] G

N,
ti~U [tc—

where § is a pre-defined sampling radius and N,. is the num-
ber of sampling points at the fine-grained level. The final
color is rendered by the integration as NeRF [4]]:

N,
Cr) = ZT(J)(l —exp(—o(z;)d;))c(z;), (4

In practice, we use Ny = 64 sampling points used to
determine the surface intersection. After determining the
first intersection, there are /V,, = 16 sampling points around
the surface within the radius of 6 = 0.03m for the query of
the neural radiance field.

1.2. Positional Encoding

Following the transformer [[10]] and NeRF [4]], we apply
positional encoding to the direction of the viewing ray, the

coordinate of the sampling point and the raw RGB values of
the input image. Given a vector v, position encoding maps
v to a higher dimension space:

7*(v) = (sin(2%7v), cos(2°7v), ...,

sin(2L 7 rw), cos(2E 1 nw)),

®)

In practice, we set L to 10 and additionally concatenate the
result with the origin vector v:

v(v) = (sin(2°7v), cos(2°

2L71

TU), ey ©

sin(7v), cos(2X " 1rw), v).

1.3. Network Architecture

Our framework contains three main network modules: 1)
the image encoder, 2) the view-to-view transformer and 3)
the DoubleField network. Here, we provide more details
about these three modules.

Image Encoder Following PIFu [8], we design our image
encoder based on the Hourglass architecture [5]], which has
2 stacked layers and each layer has 4 stacks. The image
encoder takes the images with size of 512 x 512 x 3 as
inputs and produces the feature maps with the size of 128 x
128 x 256.

View-to-view Transformer We design the view-to-view
transformer based on the classical encoder-decoder struc-
ture [[10]. The number of tokens is equal to the number of
views in our transformer. Since only sparse multi-view in-
puts are involved and the sampling points can be divided
into batches during training, our transformer does not suf-
fer from memory issues. 1) The encoder has 1 layer with
8 heads. The size of its inner embedding is 256 and the
dimension of @, K,V for each head is 32. The encoder
takes the concatenation of multi-view image features and
the direction embedding as inputs and produces the fused
features with the same dimension of 256 + (60 + 3). The
fused features are concatenated with the positional encoding
of query points and then fed into the double MLP to obtain

3.0 f 0.9

p = 07 i,
P ™M
A A AL
05 S 06 NV
pos Vv~
0.0-_7 05!
00 02 04 06 08 10 “00 02 04 06 08 10

s s
(@ (b)

Figure 1. Relationship between the values of the occupancy s in
the surface field and the density o in the radiance field.

the double embedding with the dimension of 256 + (60 + 3).
2) The decoder consists of 1 layer with 8 heads. The size
of its inner embedding is also 256 and the dimension of
@, K,V is 64. The decoder takes the concatenation of the
double embedding e, the colored embedding, and the di-
rection embedding of the query view as inputs. To keep
the shape of different inputs be the same one for the atten-
tion operation, we generate a zero vector with the size of
256 + (60 + 3) + (60 + 3) for the query view and assign the
its direction embedding to the vector. Finally, the generated
features and the double embedding concatenated with the
colored embedding are fed into decoder to obtain the texture
embedding e..

DoubleField Network There are 3 MLPs in our Double-
Field Network for the prediction: 1) The double MLP E
has 8 layers and the numbers of neurons in each layer are
(340, 256,256, 512, 512, 256]. 2) The geometry MLP E,
consists of 3 layers and the numbers of neurons in each layer
are [319,128,2]. The two channels of the outputs are the
occupancy value of the surface field and the density value
of the radiance field, respectively. For the prediction of
the surface field, a sigmoid activation function is applied to
constrain the value within [0, 1]. 3) The texture MLP E,
contains 4 layers and the numbers of neurons in each layer
is [382, 256, 128, 3], which is used to output the color values
of the radiance field.

1.4. Dataset Preparation

There are total 1,700 models collected from the Twindom
dataset, where 1,500 models are used for training and 200
models are used for testing. For each model, we first normal-
ize its height to 1.8m, then adopt Taichi [1]] and its derivative
Taichi_three to render images with the size of 512 x 512
from 360 degrees in yaw axis. To improve the generalization
in real-world scenes, we use a perspective camera model
and add random rotation of [—30, 30] degrees. The distance
between the human model and camera is randomly set within
the interval of [1, 2].

For the evaluation on ultra-high resolutions, we render
images with the ultra-high resolution of 4096 x 4096 from

360 degrees in yaw axis. Here, we still adopt the perspective
camera model but do not add random rotation.

1.5. Training Phase

The learning of geometry and appearance are simultane-
ous in the pre-training phase. We adopt the spatial sampling
strategy in PIFu [8] for the learning of geometry and the pro-
posed surface-guided sampling strategy for the learning of
appearance. For the spatial sampling, the number N, of the
sampling points is set to 20,000 and the standard deviation o
of the random offsets is set to 0.03m. We use 4 random views
among 360 degrees as input and 1 random view among 360
degrees as supervision for multi-view training. The learning
rate in our training process is le-5 and the batch size is 3.
We use 3 NVIDIA GeForce RTX 2080 GPUs to train the
network for about 4 days.

Loss function As mentioned in the main paper, our loss
function can be formulated as:

L=)\ng + ALy +)\(:Lc, @)

where we set A; = 1, A, = 0.5, Ac = 0.5 in the training
phase.

1.6. Finetuning Phase

During finetuning, we only adopt the surface-guided sam-
pling strategy to refine the geometry and appearance results.
For 6 view inputs, we randomly pick 4 of 6 views as input
and 1 of 6 views for supervision. The reason that we do not
use all views is to avoid overfitting and improve generaliza-
tion. The setting of the sampling strategy is the same with
the pre-training phase. The learning rate of finetuning is set
to 1e-6. We first fix the color module and refine the geometry
for 2,000 iterations, which takes about 10 minutes. Then we
fix the geometry module and refine the appearance results
by finetuning the texture MLP and the view-to-view trans-
former for additional 2,000 iterations, which takes about 10
minutes. The finetuning experiments are conducted on a
single NVIDIA GeForce RTX 2080 GPU.

1.6.1 Other methods

PixelNeRF [11] For the finetuning on 6 views input, we
randomly pick 4 of 6 views as input and 1 of 6 views for
supervision. The input image of PixeINeRF is downsampled
to 512 x 512 but the output is supervised by images with
the resolution of 4096 x 4096. We finetune all modules of
PixelNeRF with additional 4000 iterations.

PIFu [8]+DVR [[6] Similar to PixelNeRF, the input images
of PIFu+DVR are downsampled to 512 x 512 but its outputs
are supervised by images with the resolution of 4096 x 4096.

Training or finetuning Inference
Method
query points maximum . marching query points .
. time . time
(per image) ray nums cube (per image)
NeRF sampling [11]] 5 x 107 3x 102 50s 0 5 x 107 5.0s
urface-guided Samplin X n.g.)+5 x 10° x 10 A4s X X .28
Surface-guided Sampling | 2 x 10%(n.g.) 5 2 x 103 0.4 7 x 104 5 x 10° 0.2
Surface-guided Sampling 5 x 10° 3x10% 0.2s 0 5x10° 0.15s
(with precomputed depth)

Table 1. Comparison of the NeRF sampling and our surface-guided sampling strategies in the training, finetuning, and inference processes,

where n.g. means no gradient.

Inputs Novel view

4 views 6 views

.
%,

8 views 10 views

Figure 2. Novel-view rendering results given different numbers of input views.

Iterations
0 500 1k 2k 4k
23.04 2325 2336 2346 23.66
0.767 0.744 0.734 0.738 0.732

PSNR
Chamfer

Table 2. The quantitative results across different finetuning itera-
tions.

We finetune all modules of the network with additional 4000
iterations.

NeuralBody [7] We use the released code of NeuralBody
and regard each model is trained on a single frame. The
training process is the same with the original NeuralBody
and we modify the dataset part to enable it to take ultra-high-
resolution images with size of 4096 x 4096 as input. The
training settings such as the learning rate and decay weight
are the same with the original implementation. We train each
model for about 15 hours on a single NVIDIA GeForce RTX
2080 GPU. In video comparisons, we train NeuralBody on
the whole video sequence for about 20 hours on a single
NVIDIA GeForce RTX 2080 GPU.

1.7. Evaluation Metrics

Geometry Evaluation For the geometry evaluation, we
adopt the Chamfer distance and point-to-surface distance
as the evaluation metrics, which are implemented based on
the released code of PIFuHD [9]. The number of sampling
points for evaluation is 20,000.

Appearance Evaluation For the appearance evaluation,
we adopt PSNR and SSIM as the evaluation metrics, which

have the same protocol with NeuralBody [7]]. For fair com-
parisons with NeuralBody, we compute PSNR and SSIM on
the effective areas of rendering images and ground truth im-
ages, which are cropped using the BoundingRect in OpenCV.

2. Additional Ablation Study
2.1. Calibration errors

Connecting the two fields
in the feature space is also
morerobust to small calibra-
tion errors since the density
field needn’t strictly align
with the surface field after
finetuning. We give an ad-
ditional experiment by alter-
ing the calibration matrix in
synthetic data (randomly add
3cm translation and 3° rota- b, &
tion) and then finetuning our w/ calib. wlo calib.
network. As shown in Fig. error error
Bl some artifacts (in eye re-
gions) disappear after finetun-
ing and the rendering results
are more photo-realistic.

w/ ft.

Figure 3. Ablation study for
calibration errors.

2.2. Efficiency of Surface-guided Sampling

In Table [T} we compare the numbers of query points and
the maximum numbers of ray per batch in different sampling
strategies to validate the efficiency of the proposed surface-
guided sampling strategy during the training, finetuning, and
inference processes. The experiments are conducted on a

1 of multi views Novel view PixelNeRF

Our Method

NeuralBody

Figure 4. Additional results on the Twindom dataset. Best viewed digitally with zoom-in.

9
-
“

1 of multi views ~ Novel view

PixeINeRF

PIFu NeuralBody

Our Method

Figure 5. Additional results on the THuman2.0 dataset. Best viewed digitally with zoom-in.

single NVIDIA GeForce RTX 2080 GPU, where 10 models
are randomly picked from a dataset to evaluate the average
number of query points.

As shown in Table[I] DoubleField with the surface-guided
sampling strategy is faster and more efficient on account of
using much less query points for rendering and supporting
more sampling rays per batch. Moreover, when the depth
map is precomputed by Marching Cube, our method can be
accelerated a lot and save more memory.

2.3. The decoder of view-to-view transformer

As discussed in L..466-476 of the main paper, our view-
to-view transformer has an encoder-decoder structure and
differs from DeepMultiCap [|12] that only uses an encoder
structure. The decoder directly utilizes raw RGB values from
ultra-high resolution images, which is essential to achieve
high-fidelity human rendering. We also provide additional
ablation study for the decoder on Thuman2.0 dataset as
follows:

Method PSNR SSIM

w/o decoder 2395 0.871
w/o decoder(Ft.) 24.26 0.880
our method(Ft.) 25.10 0.905

w/o decoder w/ decoder

(ft) (ft)
In this experiment, we remove the decoder and add color

encoding to Eq.5, then feed the fused features into the
color MLP and concatenate them with the view direction.
As shown above, both quantitative and qualitative results
validate the necessity of the decoder. Without the decoder,
the results are blurry even after finetuning.

2.4. Number of Input Views

Our network is trained using 4 views as inputs and can
be generalized to more views. We evaluate our network
using different numbers of views and show the novel-view
rendering results in Fig. 2] Given more views as inputs,
our method can achieve higher quality rendering. As shown
in Fig. [2] our method can obtain plausible results with the

inputs from only 6 sparse views.

2.5. Finetuning Iterations and Orders

We further evaluate our method with different finetuning
iterations. The results are reported in Tab. 2] Our method
can refine geometry and achieve high-fidelity rendering by
fast finetuning, which takes about 2,000 iterations until the
convergence of geometry finetuning and about additional
2,000 iterations until the convergence of appearance finetun-
ing. In addition, the strategy with the first finetuning color
followed by geometry (both with 2K iterations) is unstable
and leads to higher Chamfer distance 0.772 and lower PSNR
23.35.

2.6. Relationship between the Two Fields

We randomly pick 10 models from the Twindom testing
dataset and randomly sample 20,000 points around the sur-
face to query the occupancy value of the surface field and
the density of the radiance field. The relationship between
the values of the occupancy s and the density ¢ is depicted
in Fig. (1} which indicates the DoubleField representation
associates the two fields through the learning process and
builds an implicit exponential relationship between the two
fields.

3. Additional Results
3.1. Results on Twindom and THuman2.0 Datasets

We show additional results on the Twindom and THu-
man2.0 datasets in Fig.] and Fig. [respectively. All
figures are best viewed digitally with zoom-in.

3.2. Results on Real-world Data

We adopt 5 Kinect Azure cameras to capture ultra-high-
resolution RGB images with size of 4096 x 3072 and the
frame rates is 15 FPS. We shut down the depth sensor
to avoid dropping frames but there are still some miss-
ing frames. After obtaining multi-view images, we adopt
SCHP [3]] and MODNet [2] to segment people in each view.
Then we finetune our network on the whole sequence for
4000 iterations (2000 iterations for geometry and 2000 itera-
tions for color). please refer to the supplementary video to
see additional results on real-world data.

References

[1] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-
Kelley, and Frédo Durand. Taichi: a language for high-
performance computation on spatially sparse data structures.
TOG, 38(6):201, 2019.

[2] Zhanghan Ke, Kaican Li, Yurou Zhou, Qiuhua Wu, Xiangyu
Mao, Qiong Yan, and Rynson WH Lau. Is a green screen
really necessary for real-time portrait matting? arXiv preprint
arXiv:2011.11961, 2020.

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

Peike Li, Yunqiu Xu, Yunchao Wei,
Self-correction for human parsing.
arXiv:1910.09777, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, pages 405—421. Springer, 2020.

Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In ECCV, pages
483-499. Springer, 2016.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3D representations without 3D supervision. In
CVPR, pages 3504-3515, 2020.

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qiangian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In CVPR, 2021.

and Yi Yang.
arXiv preprint

Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, October 2019.

Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul
Joo. Pifuhd: Multi-level pixel-aligned implicit function for
high-resolution 3D human digitization. In CVPR, 2020.
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Fukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurlPS, pages
5998-6008, 2017.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
CVPR, 2021.

Yang Zheng, Ruizhi Shao, Yuxiang Zhang, Tao Yu, Zerong
Zheng, Qionghai Dai, and Yebin Liu. Deepmulticap: Perfor-
mance capture of multiple characters using sparse multiview
cameras. In ICCV, 2021.

	. More Implementation Details
	. Surface-guided Sampling
	. Positional Encoding
	. Network Architecture
	. Dataset Preparation
	. Training Phase
	. Finetuning Phase
	Other methods

	. Evaluation Metrics

	. Additional Ablation Study
	. Calibration errors
	. Efficiency of Surface-guided Sampling
	. The decoder of view-to-view transformer
	. Number of Input Views
	. Finetuning Iterations and Orders
	. Relationship between the Two Fields

	. Additional Results
	. Results on Twindom and THuman2.0 Datasets
	. Results on Real-world Data

