
A. Proof of Proposition 3.1
We offer the proof of Proposition 3.1 that the KL-

divergence of ControlVAE is an upper bound of the mutual
information (MI) between input data and the encoded latent
factors, I(x, z). The detailed proof is presented below.

Proof. Let the distribution of the observed data x be p(x)
and the prior of latent variables be p(z). The expectation of
KL-divergence is given by

Ep(x) [DKL(qϕ(z|x)||p(z))]

= Ep(x)

[
Eqϕ(z|x)

[
log

qϕ(z|x)
p(z)

]] (21)

Define the marginal distribution of the latent variable z from the
encoder as

qϕ(z) = Ep(x)[qϕ(z | x)],
leading to

Ep(x) [DKL(qϕ(z|x)||p(z))]

= Eqϕ(z|x)p(x)

[
log

qϕ(z|x)
p(z)

]
= Eqϕ(z|x)p(x)

[
log

qϕ(z|x)qϕ(z)
p(z)qϕ(z)

]
= Eqϕ(z|x)p(x)

[
log

qϕ(z|x)
qϕ(z)

]
+ Eqϕ(z|x)p(x)

[
log

qϕ(z)

p(z)

]
= Eqϕ(z|x)p(x)

[
log

qϕ(z|x)p(x)
qϕ(z)p(x)

]
+ Eqϕ(z)

[
log

qϕ(z)

p(z)

]
= I(x, z) +DKL(qϕ(z)||p(z))
≥ I(x, z),

completing the proof.

B. Comparison of KL-Divergence for Con-
trolVAE and DynamicVAE

Fig 7 shows the dimwise KL-divergence and total KL-
divergence for ControlVAE and DynamicVAE. We can ob-
serve from Fig 7 (a) that ControlVAE suffers from over-
shoot problem, since there is a jump in the proposed step
function annealing method. When KL-divergence is un-
stable, it will cause some latent factors to come out earlier
(around steps 280K) so they are entangled with each other.
Conversely, our DynamicVAE in Fig 7 (b) can smoothly
control the KL-divergence, mitigating the overshoot prob-
lem, hence disentangles different factors.

C. Proof of Stability in Theorem 5.1
In this section, we provide the omitted proof in the main

paper about Theorem 5.1. For convenience purpose, we first
restate Theorem 5.1 below.

Theorem 5.1. Let a > 0 and assume g′(x) < 0,∀x > 0.
Then DynamicVAE is stable at the equilibrium point C if

and only if the parameters of the PI controller, Ki and Kp,
satisfy the following conditions

Kp +Ki < −
4(1 + a)

ag′(x∗
1)

0.5K2
pag

′(x∗
1)

2 + 2[Kp − 8Ki(1 + a)]g′(x∗
1)− 8(1 + a) < 0

Ki > 0,Kp > 0
(20)

Proof. At a high level, the proof goes by showing the spec-
tral norm of the Jacobian matrix A to be strictly less than 1
under the given condition, which is both sufficient and nec-
essary for stability. To start with, recall that the Jacobian
matrix A at equilibrium point x∗ is defined by

A =

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

|x=x∗

=

K1 K2 K3

K4 K5 0
0 1 0

 , (22)

where

K1 =
∂f1
∂x1
|x1=x∗

1
= 1

K2 =
∂f1
∂x2

|x2=x∗
2
= Ki +Kpσ(x

∗
2 − C)[1− σ(x∗

2 − C)]

=
1

4
Kp +Ki

K3 =
∂f1
∂x3

|x3=x∗
3
= −Kpσ(x

∗
3 − C)[1− σ(x∗

3 − C)]

=− 1

4
Kp

K4 =
∂f2
∂x1

|x1=x∗
1
=

a

1 + a
g′(x∗

1) (23)

K5 =
∂f2
∂x2

|x2=x∗
2
=

1

1 + a
∂f2
∂x3

|x3=x∗
3
= 0

∂f3
∂x1

|x1=x∗
1
= 0,

∂f3
∂x2

|x2=x∗
2
= 1,

∂f3
∂x3

|x3=x∗
3
= 0

In order to guarantee the stability of our state space model,
the modulus of eigenvalue λ of A should be smaller than
1, i.e., |λ| < 1. By definition, the eigenvalues of A can be
obtained by computing the roots of the following character-
istic polynomial:

det(λI −A) =

λ−K1 −K2 −K3

−K4 λ−K5 0
0 −1 λ

= λ3 − (K1 +K5)λ

2 + (K1K5 −K2K4)λ−K3K4 = 0
(24)

Instead of computing the (complex) roots of the above cu-
bic polynomial analytically, we use the following bilinear
transformation [16] to map the unit circle |λ| < 1 to the left
half plane such that its real root is less than 0 [14]:

ξ =
λ− 1

λ+ 1
⇐⇒ λ = −ξ + 1

ξ − 1
. (25)

overshoot

(a) ControlVAE. (b) DynamicVAE

Figure 7. Comparison of ControlVAE and DynamicVAE.

Substituting λ in Eq.(24) with (25) , we have

b3ξ
3 + b2ξ

2 + b1ξ + b0 = 0, (26)

where
b3 = K1 +K5 +K1K5 −K2K4 +K3K4 + 1
b2 = K1 +K5 −K1K5 +K2K4 − 3K3K4 + 3
b1 = −K1 −K5 −K1K5 +K2K4 + 3K3K4 + 3
b0 = −K1 −K5 +K1K5 −K2K4 −K3K4 + 1

(27)

Clearly, using the above transformation, we know that |λ| <
1 iff the real part of λ is less than 0, i.e., Re{ξ} < 0. In or-
der to ensure Re{ξ} < 0, based on Routh–Hurwitz stability
criterion [47], b0, b1, b2, b3 should satisfy the following suf-
ficient and necessary condition.

b0 > 0
b1 > 0
b2 > 0
b1b2 > b0b3

(28)

Substitute Eqs. (23), (26) and (28) into the above system of
inequalities, yielding the following formula (29) (next page)

To complete the proof, recall that a > 0 and we assume
g′(x) < 0,∀x. Hence the coefficients of PI controller, Kp

and Ki in Eq.(29), need to satisfy the following conditions.

Kp + 2Ki >
4(2 + a)

ag′(x∗
1)

Kp +Ki < −
4(1 + a)

ag′(x∗
1)

0.5K2
pag

′(x∗
1)

2 + 2[Kp − 8Ki(1 + a)]g′(x∗
1)− 8(1 + a) < 0

Ki > 0
(30)

Since Kp > 0,Ki > 0 in our designed PI control algorithm

and g′(x∗
1) < 0, we can further simplify it as

Kp +Ki < −
4(1 + a)

ag′(x∗
1)

0.5K2
pag

′(x∗
1)

2 + 2[Kp − 8Ki(1 + a)]g′(x∗
1)− 8(1 + a) < 0

Ki > 0,Kp > 0
(31)

Therefore, as Kp and Ki meet the above conditions (31),
our DynamicVAE would be stable at the set point, which is
verified by the following experiments on different datasets.

C.1. Verification on Benchmark Datasets

We first verify the validity of our assumption that
g′(x) < 0 in Theorem 5.1. Fig. 8 illustrates the relation-
ship between β(t) and the actual KL when model training
converges on dSprites and MNIST datasets. We can observe
that the actual output KL-divergence and β(t) have a highly
negative correlation, which means g′(x) < 0.

Next, we are going to verify the stability of the proposed
DynamicVAE on MNIST and dSprites datasets. On MNIST
dataset, its mapping function g(x) in Fig. 8 (a) can be ap-
proximately obtained by curve fitting with the following
negative exponential function:

g(x(t)) = 26.38 exp(−0.0476x(t)). (32)

And the corresponding derivative is

g′(x(t)) = −1.26 exp(−0.0476x(t)) ≤ −1.26. (33)

In addition, we introduce how to obtain the hyperparam-
eter a in our dynamic model in Eq. (15). Assume that KL-
divergence converges to a certain value C ′ in the open loop
control system during model training, then the dynamic
model in Eq. (15) can be rewritten as

y(t)− y(t− 1) + ay(t) = aC ′. (34)

b3 =
4a+ 8− (Kp + 2Ki)ag

′(x∗
1)

2(1 + a)
> 0

b2 =
4(1 + a) + (Kp +Ki)ag

′(x∗
1)

(1 + a)
> 0

b1b2 − b3b0 =
−0.5K2

pa
2g′(x∗

1)
2 − 2a[Kp − 8Ki(1 + a)]g′(x∗

1) + 8a(1 + a)

(1 + a)2
> 0

b0 =
−Kia

1 + a
g′(x∗

1) > 0

(29)

0 20 40 60 80 100
(t)

0

5

10

15

20

25

30

KL
-d

iv
er

ge
nc

e

Exp fun fitting
Data points

(a) MNIST dataset

0 25 50 75 100 125
(t)

0

5

10

15

20

25

KL
-d

iv
er

ge
nc

e

Exp fun fitting
Data points

(b) dSprites dataset

Figure 8. (a) g(x(t)) on MNIST dataset. (b) g(x(t)) on dSprites dataset.

When y(0) = 0, and the sampling period of our system is
Ts = 1, the corresponding solution is given by

y(t) = C ′(1− exp(−at)). (35)

In order to obtain the value of a, one commonly used
method in control theory is to set a = 1

t∗ as we have
y(t∗) = C ′(1 − exp(−1)) ≈ 0.632C ′. In this way, we
can derive a based on the training steps t∗ as KL-divergence
reaches 63.2% of its final value C ′ [15] in the experiments,
as shown in Fig. 9. For MNIST dataset, we can get the
hyperparameter a = 1

5000 around based on the time re-
sponse of KL-divergence in the open loop system, as shown
in Fig. 9 (a).

Similarly, the derivative of mapping function on dSprites
can be approximately expressed by

g′(x(t)) = −3.2 exp(−0.121x(t)) ≤ −3.2. (36)

In addition, we can get the hyperparameter a = 1
2500 around

based on the time response of KL-divergence in the open
loop system, as shown in Fig. 9 (b).

We summarize the parameters a and g′(x(t)) for differ-
ent datasets in the following Table 3.

In this paper, we choose Kp = 0.01 and Ki = 0.005
with the parameters in Table 3 to validate our model meets

Table 3. Parameters summary for different datasets

Dataset a g′(x(t))min

MNIST 1
5000 -1.26

dSprites 1
2500 -3.2

the conditions in Eq. (31). In addition, our experimental
results in Section 6 further demonstrate that our method can
stabilize the KL-divergence to the set points.

D. Model Configurations and Hyperparameter
Settings

We summarize the detailed model configurations and hy-
perparameter settings for DynamicVAE below.

Following the same model architecture of β-VAE, we
adopt a convolutional layer and deconvolutional layer for
our experiments. We use Adam optimizer with β1 = 0.90,
β2 = 0.99 and a learning rate tuned from 10−4. We set
Kp and Ki for PI algorithm to 0.01 and 0.005, respectively.
The weight β(t) for incremental PI controller is initialized
with 150, 100 and 50 for dSprites, MNIST and 3D Chairs,
respectively. The batch size is set to 128. Using the simi-

0 20000 40000 60000
training steps

0.25

0.50

0.75

1.00

1.25

1.50

1.75

KL
 D

iv
er

ge
nc

e

(a) MNIST when β = 80

0 5000 10000 15000 20000
training steps

0.0

0.2

0.4

0.6

0.8

1.0

KL
 D

iv
er

ge
nc

e

(b) dSprites when β = 130

Figure 9. Time response of KL-divergence under different β on MNIST and dSprites datasets respectively

lar methodology in [5], we train a single model by gradu-
ally increasing KL-divergence from 0.5 to a desired value C
with a step function s and ramp function for every M train-
ing steps, as shown in Fig. 7(b). In the experiment, we set
the step, s, to 0.15 per M = 6, 000 training steps (includ-
ing 5, 000 in step function and 1, 000 in ramp function) as
the information capacity (desired KL- divergence) increases
from 0.5 until to 20, 26 and 18 for dSprites, MNIST and 3D
Chairs datasets respectively. In addition, the window size
of moving average is T = 5 with equal weight α. Our
model adopts the same encoder and decoder architecture as
β-VAEH and ControlVAE except for plugging in PI control
algorithm, as illustrated in Table 4 and Table 5.

Table 4. Encoder and decoder architecture for disentangled repre-
sentation learning on dSprites and MNIST.

Encoder Decoder

Input 64 × 64 binary image Input ∈ R10

4 × 4 conv. 32 ReLU. stride 2 FC. 256 ReLU.

4 × 4 conv. 32 ReLU. stride 2 4 × 4 upconv. 256 ReLU. stride 2

4 × 4 conv. 64 ReLU. stride 2 4 × 4 upconv. 64 ReLU. stride 2.

4 × 4 conv. 64 ReLU. stride 2 4 × 4 upconv. 64 ReLU. stride 2

4 × 4 conv. 256 ReLU. stride 1 4 × 4 upconv. 32 ReLU. stride 2

FC 256. FC. 2 × 10 4 × 4 upconv. 32 ReLU. stride 2

E. Extra Experiments on Other Datasets
Fig 10 shows an example of latent traversals for the pro-

posed DynamicVAE on smallNORB dataset. We can ob-
serve from it that it disentangles three different latent fac-
tors: lighting, elevation, and azimuth. Moreover, we present
some samples of latent traversals for our method and the

Table 5. Encoder and decoder architecture for disentangled repre-
sentation learning on 3D Chairs.

Encoder Decoder

Input 64 × 64 × 3 Input ∈ R16

4 × 4 conv. 32 ReLU. stride 2 FC. 256 ReLU.

4 × 4 conv. 32 ReLU. stride 2 4 × 4 upconv. 256 ReLU. stride 2

4 × 4 conv. 64 ReLU. stride 2 4 × 4 upconv. 64 ReLU. stride 2.

4 × 4 conv. 64 ReLU. stride 2 4 × 4 upconv. 64 ReLU. stride 2

4 × 4 conv. 256 ReLU. stride 1 4 × 4 upconv. 32 ReLU. stride 2

FC 256. FC. 2 × 10 4 × 4 upconv. 32 ReLU. stride 2

baselines on MNIST dataset. We can see DynamicVAE
outperforms ControlVAE in term of rotation factor as il-
lustrated in Fig. 11 and 12, though they have comparable
disentanglement score. Moreover, DynamicVAE has a bet-
ter disentanglement than β-VAE, LM, and FactorVAE in the
following figures.

Lighting

Elevation

Azimuth

Figure 10. Latent traversals on smallNORB dataset for Dynamic-
VAE.

(a) Rotation (b) Thickness (c) Style from left to right

Figure 11. Latent traversals on MNIST for DynamicVAE. We can see our method can disentangle four different factors: rotation, thickness,
size(width) and writing style.

(a) Rotation (b) Thickness (c) Style from left to right

Figure 12. Latent traversals on MNIST for ControlVAE.

(a) Rotation (b) Thickness (c) Style from left to right

Figure 13. Latent traversals on MNIST for LM.

(a) Rotation (b) Thickness (c) Style from left to right

Figure 14. Latent traversals on MNIST for FactorVAE.

(a) Rotation (b) Thickness (c) Style from left to right

Figure 15. Latent traversals on MNIST for β-VAEH (β = 10).

(a) Rotation (b) Thickness (c) Style from left to right

Figure 16. Latent traversals on MNIST for β-VAEB (γ = 100).

(a) Rotation (b) Thickness (c) Style from left to right

Figure 17. Latent traversals on MNIST for the basic VAE.

