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1. Ablation on Random Masking
We quantitatively verify the effectiveness of our proposed adaptive unsigned distance (AUD) and our random masking,

i.e., the loss term in Eq. (5), by performing an ablation study on the classification adaptation on PointDA-10. We train all six
different settings for our method without AUD or random masking and with AUD and random masking, respectively. The
comparisons are reported in Tab. 1.

From Tab. 1, we can make three key observations:

• (a): Besides the visual comparison of the reconstructed point clouds using nearest neighbor distance and AUD shown
in Fig. 6 in our main paper, the quantitative comparison of adaptation results shows that AUD significantly improves
over the non-adaptive one.

• (b): when adaptations involve S* (ScanNet, a dataset where lots of point clouds are in a partial form) in either the
source or the target domain, random masking will significantly increase the performance, which confirms that our
random masking scheme can improve the effectiveness of our method.

• (c): The scores of adaptations between two synthetic datasets are comparable without and with random masking, which
proves that our random masking can be considered as a general augmentation for all the datasets.

These three observations confirm that our proposed AUD and random masking scheme are necessary and effective.

Methods AUD Masking M→S M→S* S→M S→S* S*→M S*→S Avg.

Supervised 93.9 ± 0.2 78.4 ± 0.6 96.2 ± 0.1 78.4 ± 0.6 96.2 ± 0.1 93.9 ± 0.2 89.5
Baseline (w/o adap.) 83.3 ± 0.7 43.8 ± 2.3 75.5 ± 1.8 42.5 ± 1.4 63.8 ± 3.9 64.2 ± 0.8 62.2

Ours
82.3 ± 0.4 48.4 ± 0.5 71.6 ± 0.8 49.8 ± 0.7 67.1 ± 0.3 65.8 ± 0.7 64.2

✓ 85.4 ± 0.5 53.2 ± 0.2 77.3 ± 0.5 53.6 ± 0.7 71.9 ± 0.6 69.8 ± 0.8 68.5
✓ ✓ 85.8 ± 0.3 55.3 ± 0.3 77.2 ± 0.4 55.4 ± 0.5 73.8 ± 0.6 72.4 ± 1.0 70.0

Table 1. Classification accuracy (%) averaged over 3 seeds (± SEM) on the PointDA-10 dataset. M: ModelNet, S: ShapeNet, S*: ScanNet;
→ indicates the adaptation direction. Masking: the proposed random masking scheme.

2. Details of GraspNetPC-10
Fig. 1 shows all the selected models from the GraspNet dataset [3]. Most of the models have completely different shapes,

and some models have similar shapes, e.g., Pear and Mouse, Can and Shampoo.
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Figure 1. All of the selected models from the GraspNet dataset [3].

3. Analysis on Geometry-Aware Implicits

Methods MMDl MMDp WD KL JS

Baseline(w/o adap.) 115.0 6.3e+5 444.66 6.20 0.56
DefRec+PCM [1] 13.91 3012.0 63.123 0.23 0.18
GAST [8] 69.11 4.0e+5 560.53 3.22 0.39
Ours 0.134 0.5306 1.0450 1e-3 3e-4

Baseline(w/o adap.) 183.2 2.0e+6 1180.4 9.55 0.52
DefRec+PCM [1] 15.09 3.7e+4 156.52 0.79 0.15
GAST [8] 94.92 9.8e+5 962.28 3.58 0.37
Ours 0.195 1.8017 2.5340 2e-3 4e-4

Table 2. Domain distances between the source and target domains without or with different domain adaptation methods. MMDl: linear
MMD (Maximum Mean Discrepancy), MMDp: MMD with polynomial kernel, WD: Wasserstein dist., KL and JS divergence. Top:
ModelNet to ScanNet in PointDA-10 dataset, bottom: Syn. to Kin. in GraspNetPC-10 dataset. Our method achieves the smallest domain
discrepancy.

Baseline (w/o adap.) GAST Ours

Figure 2. Class-wise MMDp for the task: ModelNet to ScanNet in PointDA-10 dataset. Diagonal shows source-target distances of the
same class. Ours is much smaller. Upper and lower triangular matrices indicate distances between different classes in the source and target
domain, respectively. Our method maintains class-wise distances well.

Our high-level insight is that our proposed geometry-aware implicit preserves geometric information of the point clouds,
while learning away the domain-specific variations. We add analysis on domain distances in Tab. 2 and Fig. 2. Compared to
the Baseline (w/o adapt.) and other domain adaptation methods, our method can significantly decrease the domain distribution



gap between the source and target domains. Meanwhile, domain distances between different classes in the target domain are
apparent, like in the source domain, which is beneficial for classification using models trained with source domain data.

4. Methods with SPST
In Tab. 3, we further compare our method to the state-of-the-art methods with SPST(self-paced self-training). One can see

that our method still outperforms the others due to the efficient initial adaptation with the proposed geometry-aware implicits.

Methods Adv. SLT SPST Syn.→Kin. Syn.→RS. Kin.→RS. RS.→Kin. Avg.

Supervised 97.2 ± 0.8 95.6 ± 0.4 95.6 ± 0.3 97.2 ± 0.4 96.4
Baseline (w/o adap.) 61.3 ± 1.0 54.4 ± 0.9 53.4 ± 1.3 68.5 ± 0.5 59.4

PointDAN [4] ✓ 77.0 ± 0.2 72.5 ± 0.3 65.9 ± 1.2 82.3 ± 0.5 74.4
✓ ✓ 91.8 ± 0.3 79.1 ± 0.6 72.3 ± 0.5 84.7 ± 0.2 82.0

DefRec+PCM [1] ✓ 80.7 ± 0.1 70.5 ± 0.4 65.1 ± 0.3 77.7 ± 1.2 73.5
✓ ✓ 92.7 ± 0.7 78.3 ± 0.4 73.6 ± 0.2 82.3 ± 0.3 81.7

GAST [8] ✓ 69.8 ± 0.4 61.3 ± 0.3 58.7 ± 1.0 70.6 ± 0.3 65.1
✓ ✓ 81.3 ± 1.8 72.3 ± 0.8 61.3 ± 0.9 80.1 ± 0.5 73.8

Ours ✓ 81.2 ± 0.3 73.1 ± 0.2 66.4 ± 0.5 82.6 ± 0.4 75.8
✓ ✓ 94.6 ± 0.4 80.5 ± 0.2 76.8 ± 0.4 85.9 ± 0.3 84.4

Table 3. Classification accuracy (%) averaged over 3 seeds (± SEM) on GraspNetPC-10. Syn.: Synthetic domain, Kin.: Kinect domain,
RS.: Realsense domain. Our models achieve the best performance over all settings.

5. Per-Class Accuracy
Following [8], we also report class-wise classification accuracy in Tab. ?? and the selected experimental setting is Synthetic

domain to Kinect domain on the GraspNetPC-10 dataset. We compare our method to the state-of-the-art methods without
and with SPST, respectively. Our method reaches the highest scores on most of the objects.

Methods SPST Box Can Banana Drill Scissors Pear Dish Camel Mouse Shampoo Avg.

Supervised 99.6 97.3 94.9 96.9 93.8 100.0 100.0 94.1 96.5 99.2 97.2
Baseline (w/o adap.) 80.1 50.4 55.1 71.9 65.2 75.4 65.6 24.6 40.2 84.4 61.3

PointDAN [4] 97.3 79.7 62.5 86.3 66.0 81.6 100.0 71.1 39.1 85.9 77.0
✓ 99.2 93.4 89.1 99.2 80.9 99.2 100.0 91.8 69.1 96.5 91.8

DefRec+PCM [1] 100.0 85.9 64.5 88.7 73.0 81.6 100.0 81.3 32.4 98.8 80.7
✓ 100.0 93.8 87.5 98.8 83.2 100.0 100.0 98.4 66.4 98.8 92.7

GAST [8] 92.2 46.5 47.3 50.4 71.1 90.2 100.0 44.9 70.7 85.2 69.8
✓ 97.3 52.0 59.4 76.6 74.6 95.7 100.0 90.2 82.0 85.9 81.3

Ours 99.6 83.2 68.4 88.7 79.7 90.2 100.0 35.2 78.5 88.7 81.2
✓ 99.6 97.3 92.2 96.9 84.0 100.0 100.0 89.8 86.7 99.2 94.6

Moreover, visualizations of confusion matrices in terms of class-wise classification accuracy are shown in Fig. 3. We
select results of the baseline without adaptation and our full adaptation method for Synthetic domain to Kinect domain and
Realsense domain to Kinect domain. We find that, without adaptation, classifiers cannot distinguish similar objects well,
like Can and Pear. For objects with complex geometries, e.g., Camel, classifiers without adaptation cannot recognize them
well, neither. With our adaptation, we can significantly increase the classification accuracy for most of the objects. However,
for the adaptation from Realsense domain to Kinect domain, adaptation reduces the performance on object Mouse to some
degree because the classifier is confused on similar geometries (Pear and Mouse).



(a) w/o adap. (Syn.    Kin.) (c) w/o adap. (RS.    Kin.) (d) Ours with SPST (RS.    Kin.)(b) Ours with SPST (Syn.    Kin.)

Figure 3. Confusion matrices in terms of class-wise classification accuracy.

6. Analysis on Convergence
As mentioned in our main paper, models are trained for 200 epochs on PointDA-10. We train all models to convergence

for fair comparisons. We show the loss decreasing for domain adaptation on PointDA-10 dataset in Fig. 4 (a). One can see
that methods except ours all convergence before 150 epochs which means training continually will not bring changes to their
performances. For our method without pre-training, the loss is a little difficult to decrease, especially at the beginning. The
reason is that our self-supervised task is designed to learn the whole geometry representation and it is difficult to learn than
the others. So that, we train our method to 200 epochs to make sure our method convergence. The delay in convergence is a
limitation of our method, and more sophisticated sampling could be helpful and hopefully can improve the performance.

(a) (b)

Figure 4. (a) Different loss decreasing curves about domain adaptation. (DefRec+PCM: [1], GAST [8], RS: [5]) (b) Classification
accuracy on ModelNet40 [7] with or without pre-training.

7. Standard Self-Supervised Experiment
We also analyze how our self-supervised learning affects the downstream task. Like Fig. 4 (b) shows, we use a pre-trained

model on ShapeNet dataset [2] with our method and then train a classification network on ModelNet40 dataset [7] using
DGCNN [6]. Our pre-train self-supervised method can speed up the convergence, increase the accuracy slightly and make
training more robust.
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