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In the supplementary material, we first illustrate some
technical details about the the weights in Eq. (3), the posi-
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tion information P, and some experiment issues. Then, we Y ® T YR ®
proof the Eq. (6) in the paper. Third, experiments on differ- -
ent resolutions of latent feature, pure model capacity, and L T .X """"""""
refining transformer-based segmentation results help under- ]
stand CRM. Finally, additional visualizations show CRM’s :
refinement performance. ® @ L ®
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1. Technical details

Owing to space limitations, we do not explain some de- Oa a o wq ay % WO
tails on paper. Here, we will illustrate the weights in Eq. (3) 1. 2 Wi = a ,; ............ 2

o . . . 4 — Aq e

and the position information P in detail. ) HE

For the weights w, ,k € {1,2,3,4} in Eq. (3), we a3 a4. wW- = a W3 W4
present its details in Fig. 1. After finding the red supporting 2 3 P

. . . i [e) O w-.=a O reedannnnnanns 0]
points zx, k € {1,2,3,4} of blue queried point z, we cal 3 2
culate the area value ay between z; and x. Then swap the
symmetric area values aj about the x point to be weights
wy. The final prediction is the weighted average of the pre- =0 +0 + 0 +0

dictions of the supporting points.

For position information P, in the paper, it consists of the
refinement target position Cy, the relative target coordinate
offset C',, and the ratio r between feature and target [3]. We
also normalize the feature map coordinate Ct and the refine-
ment target coordinate C; to align. In Fig. 2, all components
are drawn from left to right, top to down in a simple exam-
ple. The upper row is the normalized Ct, normalized Ci,
and the relative offset C; between them. Each item of C;
is the offset vector of blue point on C; from corresponding
red supporting point on C;. The offset is showed in “details
of C;” in the lower row. And the way to find the red points
of blue point is illustrated in Sec. 3.3. What’s more, the
rightest part of lower row is a more complex but common
example of C.

The coarse masks, from FCN [11], Deeplavbv3+ [2],
RefineNet [10], and PSPNet [15], are all trained on Pas-
cal VOC [8]. And we utilize MaskFormer [4] and Seg-
Former [12]’s pretrained weights on ADE20K from their

Figure 1. Details of the w,,_in Eq. (3).

Github repositories.

In quantitative comparison, we train the SegFix [14] on
the same mask perturbing dataset and keep other settings
consistent. We use MGMatting pretrained on RWP [13].
To erase the performance degradation caused by the mask-
insensitive matting setting, we update cases that have at
least 0.80 IoU with coarse inputs after inference.

2. Proof of Eq. (6)

For convenience, we suppose that each entry of the ma-
trix A € R?*™ is sampled from N'(0, 2/m). We now define
the fixed feature space F C R™:

1< < Afill =I5, =1, Vfi, f; €F.
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Figure 2. A simple example of position information.

Show that

dim(conv (¢(Af)) = dim(d(Af)), [f€F,

where ¢ : R — R is the ReLU activation, conv(+) is the
convex hull of a bounded set, and dim is the covering num-
ber of a compact set'.

Proof. Before proving the main results, we first present two
useful lemmas.

Lemma 1. Let 21, 2 € R™, |z1]|, = [|22|l, = 1, and
x{ zo = 2. We have

V1 — 22 + z(m — arccos z
B (0w 210w 12)) = ‘ )

7r
where w ~ N (0,2) and ¢(-) is the ReLU function.

This lemma is a direct corollary of the results in [7] (see
Table 1 therein). We then present the norm preserving prop-
erty [1].

Lemma 2. If A; ; ~ N(0,2/m) is the random Gaussian
matrix and ¢(-) is the ReLU function, then for fixed feature
xr e R™:

Pa([l¢(Az)[ly € (1 £ )]z]l,) > 1 —exp{—e®m/100}.

ICovering number can be seen as a finer measure of the dimensions of
a compact set.

First of all, for any f,f1,fo € F, it is easy to
show that the random variable (¢(w " fi)p(w' f2)) is sub-
Exponential since (gb(wT f )) is sub-Gaussian. Hence, with
probability at least (1 — 2 exp{—(me)}), we have:

|p(Af1)Td(Afz) — Eu(p(w’ fr)d(w" 22))| <.
Note that the function m"’z(:_arccosz) c =11 —
[0,1] is bijective and maps the values from [—1,1] — [0, 1].
Namely, with probability at least (1 — 2 exp{— Q( e)}):

0< @(Af1) p(Af2) <1 +e

Combine with Lemma 2, we have:
L—e<|op(Af)ll; <1+e

Therefore, with probability (1 — 2exp{—Q(e?m)}),
d(Af),Vf € F belongs to the banded area of a positive
half axis semicircle in R? with the width being e. Then the
e-covering number’ of ¢(Af) is:

dim (¢(Af)) feF.

—o(.),

2The smallest possible cardinality of an e-net of a given set.
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Figure 3. Performance changing with resolution in single-forward inference. The dashed lines refer to the mean Boundary Accuracy (mBA)
and the solid for Intersection over Union (IoU). Each color represents one method.

Res. of Flatent ToU mBA
conv2_x 94.18 76.09
conv3_x 94.02 75.84
conv4 _x 93.50 72.96

Table 1. The influence of different resolutions of latent feature.
Res. denotes resolution.

In contrast, in the worst case, it is impossible to cover the
set ¢(Af) with only ©(2) e-balls and we have:

dim (conv(6(Af))) = O(~

6—2), fel.

We now finish the proof. O

Discussion In general, the representation ability of a ball
and a sphere is almost the same in high dimensional space.
However, in low dimensional space, it is a completely dif-
ferent scene. This is also the reason that why some common
methods which work well for image data are needed to be
re-designed for 3D point cloud. It is more meaningful to
expand the representation ability of the model in low di-
mensional space than to only increase the parameters of the
model.

3. Quantitative results on different resolutions
of latent feature

We additionally conduct the experiment on the different
resolutions of feature fusion. In detail, using ResNet-50 [9]
without conv5 _x as the backbone, we choose to fuse the fea-
ture from conv2_x, conv3_x, and conv4_x. The fused feature
is the concatenation of the resized feature from these three
layers. The resolution of fused feature is an important pa-
rameter, which influences Fj,ten: and the r in position fea-
ture P. From the Tab. I, we find larger resolution of the
fused feature is better for performance. It may be because
segmenting ultra high-resolution images needs finer feature,
corresponding to higher resolution.

IoU/mBA w/o CRM w CRM
MaskFormer [4] 82.38/62.52  85.24/76.17
SegFormer [12]  74.87/56.63  80.25/74.52

Table 2. Refine transformer-based segmentation results.

4. Results of pure model with single forward

To verify performance of the pure model, we compare
our method and CascadePSP [5] in single forward for dif-
ferent resolution inputs. In detail, CRM directly inferences
on different resolution inputs, and CascadePSP [5] refines
the inputs patch by patch. The inputs are from PSPNet [15]
on the BIG dataset. Fig. 3 shows the performance chang-
ing with the image resolution through a single forward of
model. CRM is not good at very low resolution. However,
when the resolution increases, the performance of CRM is
better.

5. Refine transformer-based segmentation

Since more and more transformer-based segmentation
methods emerge, we also apply our CRM on their segmen-
tation results. From the Tab. 2, we find CRM can also
increase the performance of transformer-based methods on
the BIG dataset.

In comparison, [4, 12] only release the pretrained
weights on Cityscape [60] and ADE20K [16], but the
BIG [5]’s annotation follows Pascal VOC’s guideline. We
choose the union of ADE20K and Pascal VOC’s categories
to evaluate.

6. Additional visualization

We also provide additional visualization results of CRM
in Figs. 4, 5, 6 and 7. Masked areas are put on a green
background for easy distinguishing. Although the images
are resized, their original resolution is very large (2K~6K),
where the details are more obvious. These visualizations
are better viewed on the screen.
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Ground Truth Coarse Mask (FCN) CascadePSP CRM (Ours)

Figure 4. Visualization of the refinement on FCN [11]’s output. Better viewed on the screen.



Image Ground Truth Coarse Mask (DeepLabV3+) CascadePSP CRM (Ours)

Figure 5. Visualization of the refinement on DeepLabV3+ [2]’s output. Better viewed on the screen.
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Ground Truth Coarse Mask (RefineNet) CascadePSP CRM (Ours)

Image

)]’s output. Better viewed on the screen.
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Figure 6. Visualization of the refinement on RefineNet [ |
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Image Ground Truth Coarse Mask (PSPNet) CascadePSP CRM (Ours)

Figure 7. Visualization of the refinement on PSPNet [15]’s output. Better viewed on the screen.
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