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1. Training and Testing Splits of the KITTI and the Ford Multi-AV dataset

Despite both KITTI and the Ford Multi-AV datasets being captured by accurate survey-grade RTK-GPS systems, we
have uncovered that their ground-truth GPS tags are sometimes contaminated by considerable noises. This can be seen, for
example, by marking up the GPS-reported camera position in the satellite image and visually comparing if the observed
ground-level scenes as if seen from the ground plane matches well with the marked position in the satellite image. Fig. 1 and
Fig. 2 illustrate some examples from the Ford Dataset, which clearly reveal such mismatches.

We manually filter out those inaccurate ones and construct new subsets for the KITTI and the Ford multi-AV dataset to
train and evaluate our new localization method. The training and testing image numbers of the two datasets are presented in
Tab. 1 and Tab. 2, respectively.

To validate such a pre-filtering is necessary, we conducted comparisons between “training on the full dataset” and “training
on the filtered dataset” on the first two logs of the Ford multi-AV dataset. The results are presented in Tab. 3. They are
evaluated on the same test sets for fair comparisons. It can be seen that the pre-filtering strategy significantly boosts the
performance, especially for lateral translation optimization.

We provide the performance of our method on the remaining logs (Log3~Log6) of the Ford multi-AV dataset in Tab. 4,
to complement our results in Sec. 6.1 of the main paper.

(a) The camera is on the left road, as indicated by the ground image, while its position  (b) The camera is on the second road from the right, as indicated by the ground image,
computed from the GPS tag pinpoints it is near the lane line between the left and right ~ while its position computed from the GPS tag pinpoints it is near the lane line between
roads, as shown in the satellite image. the first and second roads from the right, as shown in the satellite image.
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(c) The camera is on the left of the main road, as indicated by the ground image, while  (d) The camera is in the middle of the right road, as indicated by the ground image,
its position computed from the GPS tag pinpoints it is in the middle of the main road,  while its position computed from the GPS tag pinpoints it is near the right boundary
as shown in the satellite image. of the road, as shown in the satellite image.
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Figure 1. Examples whose GPS tags are inaccurate. In the satellite image of each sub-figure, the red point indicates the camera position
computed from the GPS tag, and the red arrow marks the camera facing direction. The images are from Log3 of drive 2017-10-26.



Figure 2. Examples whose GPS tags are accurate. In the satellite image of each sub-figure, the red point indicates the camera position
computed from the GPS tag, and the red arrow marks the camera facing direction. The images are from Log2 of drive 2017-10-26.

Table 2. Training and testing splits for the Ford multi-AV dataset. (The training and testing sets

of Log3 are from the same drive but different locations.)

Table 1. Training and testing image

numbers for the KITTI dataset. ‘ | Logl | Log2 | Log3 | Logd | Log5 | Logb
| Training | Testl | Test2 Training| Ve [2017-10-26/2017-10-26| 2017-08-04| 2017-10-26| 2017-08-04 |2017-08-04
#Image| 4,000 10,350 1,500 7466 8430 3857
#lmage | 19.655 | 3,773 | 7,542
Testing | Drive |2017-08-04|2017-08-04| 2017-08-04 | 2017-08-04| 2017-10-26 | 2017-10-26
e | #lmage| 2,100 3,727 1,500 3,511 3,500 1,000

Table 3. Performance comparison of our method on the first two logs of the Ford multi-AV dataset, when trained on the “Full Dataset” or
the “Filtered Dataset”.

Logl Log2
Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d=1d=3d=5|d=1d=3d=5/0=10=360=5|d=1d=3d=5|d=1d=3d=5(0=160=360=5

26.67 64.76 79.76 | 5.14 1548 24.14|28.81 66.14 81.24 |22.14 58.06 71.18 | 547 16.15 25.95| 9.98 30.35 49.26
46.10 70.38 7290 | 5.29 16.38 26.90 | 44.14 72.67 80.19 | 31.20 66.46 78.27 | 4.80 15.27 25.76| 9.74 30.83 51.62

Full Dataset
Filtered Dataset

Table 4. Performance of our method on the remaining logs of the Ford multi-AV dataset.

Lateral Longitudinal Azimuth
d=1d=3d=5|d=1d=3d=5|0=160=360=5

Log3|11.40 34.00 58.13| 4.47 13.13 2247 | 893 29.73 48.80
Log5|15.26 54.60 76.71| 6.23 19.89 32.34|17.74 47.60 67.74

Lateral Longitudinal Azimuth
d=1d=3d=5|d=1d=3d=5|0=10=36=5

Log4|29.96 66.28 74.88 | 4.96 15.52 25.92|14.33 43.69 67.45
Log6|20.20 45.20 59.00| 3.90 14.30 24.50 | 10.80 31.80 52.50

2. Increasing the Grid Sample Density for Image Retrieval-based Methods

In this section, we provide additional experiments to investigate the performance of image retrieval-based methods when
increasing the grid sample density in constructing the database. Among the state-of-the-art cross-view image retrieval algo-
rithms, DSM [45] and VIGOR [67] are two of the performers. We therefore only compared ours with these two algorithms.
From the results in Tab. 5, we did not observe consistent positive effects when increasing the grid sample density. This
might be because, in the fine-grained retrieval-based localization, the database images using a grid of 4 x 4 are already very
similar and hard to discriminate. Thus, increasing the sample density of database images does not help. Fig. 3 presents some
examples of the database images sampled using a grid of 4 x 4.

3. Different Initial Values

In Tab. 6, we show the performance of our method with different pose initialization ranges. The performance increases
as the search range decreases. The consumer-level GPS accuracy ranges from 15m to 20m, and the image retrieval methods
[44, 54] can make their top-1 retrieved results be within 5m to their ground truth. Since the primary purpose of this paper is



Figure 3. The database images for fine-grained image retrieval using a grid of 4 x 4. They are very similar and hard to discriminate.

Table 5. Performance of image retrieval-based methods when increasing the grid sample density on the KITTI dataset.

Testl Test2
Grid Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d=1d=3d=5|d=1d=3d=5|0=160=30=5|d=1d=3d=5|d=1d=3d=5|0=160=360=5
4 x4|12.00 3529 53.67| 433 1248 21.43| 3.52 13.33 23.67| 845 24.85 37.64| 394 1224 2141|223 7.67 1342
DSM [45] 5x 5[ 11.69 33.34 50.25| 451 13.68 21.55| 3.66 13.65 24.49|11.44 33.16 50.76 | 4.11 12.13 20.35| 3.20 13.35 23.67
16 x6|12.72 3435 50.15| 453 12.70 21.89| 3.45 13.65 24.44|1225 3431 51.83| 4.04 1249 21.13| 3.37 13.55 23.77
7x 71280 3538 5041|493 13.60 22.55| 3.60 1391 25.10|12.42 3491 51.72| 399 12.56 21.49| 3.31 13.14 23.38
4x4(20.33 5248 7043 | 6.19 16.05 25.76| - - - |20.87 54.87 75.64| 598 16.88 27.23| - - -
VIGOR [67] 5x 5| 1898 48.85 70.34| 459 13.89 22.77| - - - 16.83 4838 71.15| 4.08 1232 2091 | - - -
V16 x 6]17.84 48.98 7039 | 5.17 1458 24.07| - - - 17.54 48.46 71.40| 446 13.56 22.01 - - -
7 x 71850 49.06 70.55| 490 14.15 2343| - - - 17.37 48.48 71.68| 436 13.71 2229 - - -
Ours ‘ - ‘35.54 70.77 80.36‘ 5.22 15.88 26.13‘19.64 51.76 71.72‘27.82 59.79 72.89‘ 5.75 16.36 26.48‘18.42 49.72 71.00
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Figure 4. Coordinates illustration. Note that this is only for illustration purpose. The coordinates used in our codes are slightly different
with this one.

to study whether we can refine an initial coarse estimate by cross-view matching, we set our search region as 40mx40m in
the paper.

4. Additional Comparisons

Ours w/o Long. We investigate whether the loss item on longitudinal pose estimation can be removed, denoted as “Ours w/o
Long”. As shown in the first row of Tab. 7, this results in a negative effect, indicating that the longitudinal pose constraints
contribute to learning discriminative features, although the ambiguity along this direction is high.

Different iteration strategies. In our framework, the LM optimization is first applied to the multi-level features from coarse
to fine (C2F), and then the C2F update is executed iteratively. Here, we study the performance of the LM optimization when
it is first applied to the coarsest feature level until the maximum iteration and then propagates to finer levels, denoted as “C2F
Global”. The results are presented in the second row of Tab. 7. Compared to C2F Global, our update strategy guarantees
fine-tuning around more possible solutions and thus is more likely to find the global optimum.



Table 6. Performance comparison with different search regions on the KITTI dataset.

Search Testl Test2
Region Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
BN g1 d=3 d=5|d=1 d=3 d=5|0=1 0=3 0=5|d=1 d=3 d=5|d=1 d=3 d=5|0=1 0=3 0=5

40mx40m | 35.54 70.77 80.36 | 522 15.88 26.13 | 19.64 51.76 71.72 |27.82 59.79 7289 | 5775 1636 26.48 | 18.42 49.72 71.00
20mx20m | 44.66 73.92 81.18 | 12.06 35.62 54.73 | 25.31 57.41 7448 |34.17 7230 81.15 | 11.56 35.08 53.77 | 11.40 48.18 65.80
10mx10m | 64.86 92.23 96.98 | 29.08 69.49 88.66 | 36.92 73.95 86.88 | 5598 90.84 96.43 | 2597 66.96 88.12 | 31.36 69.46 84.50

Table 7. Additional ablation study results of our method on the KITTI dataset.

Testl Test2
Lateral Longitudinal Azimuth Lateral Longitudinal Azimuth
d=1d=3d=5|d=1d=3d=5|0=160=360=5|d=1d=3 d=5|d=1d=3d=5|0=10=30=5

25.63 56.72 69.55
2332 50.60 61.25
35.54 70.77 80.36

5.99 16.06 26.85
527 15.88 26.05
522 15.88 26.13

Ours w/o Long
C2F Global
Ours

13.84 39.01 59.98
11.87 33.66 54.86
19.64 51.76 71.72

20.50 52.52 67.57
2043 45.86 58.51
27.82 59.79 72.89

532 15.16 25.23
525 15.82 26.16
5.75 16.36 26.48

1290 36.79 57.73
11.65 33.65 54.02
18.42 49.72 71.00

5. Coordinates Illustration and Pose Parameterization

We set the world coordinates system to the initial camera pose estimate, as shown in Fig. 4. For illustration brevity, we
pre-align the satellite image to make its center correspond to the initial camera position and its u direction parallel to the
initial camera facing direction. Here, both z and z. denote the camera facing direction.

Denote Az is the lateral translation, Az is the longitudinal translation, and @ is the azimuth angle. The query ground
camera pose in Eq. (2) and Eq. (4) in the main paper is parameterized as

—sinf 0 cosf Az
R=]|cosf 0 sinf|, t=1[0]. (1)
0 1 0 Az

6. Broader Impact

This paper has introduced a new technique for high-accuracy vehicle/camera localization. This technique can provide
accurate camera position estimation even in a GPS-denied environment. The position of a vehicle or camera of a user is often
considered sensitive or private information. The proposed technique may be abused or misused, causing privacy violations.
We advocate careful data protection and model management to mitigate the risk.
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