
Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class
Incremental Learning (Appendix)

Yujun Shi1 Kuangqi Zhou1 Jian Liang3 Zihang Jiang1

Jiashi Feng2 Philip Torr4 Song Bai2 Vincent Y. F. Tan1

1National University of Singapore 2 ByteDance Inc.
3 Institute of Automation, Chinese Academy of Sciences (CAS) 4 University of Oxford

shi.yujun@u.nus.edu vtan@nus.edu.sg

A. Proof of Proposition 1 (Main text Sec. 2.3)
Proof. Recall that for a d-by-d correlation matrix K, we have:

d∑
i=1

λ
(c)
i = Tr(K) = d. (1)

This is because for a square matrix, summation of eigenvalues equals trace of the matrix. In addition, for a correlation matrix,
all its diagonal elements are 1, which results in Tr(K) = d.

Next, for the left hand side of the equation, we have:

d∑
i=1

(λi −
1

d

d∑
j=1

λj)
2 =

d∑
i=1

(λi − 1)2 (Plug-in Eqn. (1))

=

d∑
i=1

λ2
i − 2

d∑
i=1

λi + d

=

d∑
i=1

λ2
i − d (Plug-in Eqn. (1)).

(2)

Next, for the right hand side, we have:

∥K∥2F − d = Tr(KTK)− d

= Tr(UΣUTUΣUT)− d (Applying eigendecomposition on K)

= Tr(UΣ2UT)− d

=

n∑
i=1

λ2
i − d.

(3)

Therefore, we have shown that left hand side of the equation equals the right hand side.

B. More Analysis on Why CwD Improves CIL
Although we have developed our method through observations on the differences between the oracle model and the

naı̈vely-trained initial-phase model, the underlying reason why more uniformly scattered representations for each class benefit
CIL is still yet to be explored.

In this section, we provide additional analysis on the effectiveness of CwD. We posit the reason why CwD improves CIL
is as follow: after applying CwD, data representations produced by the model are not overly compressed. That being said,

Figure 1. Visualization on how I(X;Z|Y) change with increasing η. X-Axis is η. Y-Axis is 1
C

∑C
c=1

∑d
i=1 log λ

(c)
i = 1

a
(I(X;Z|Y)−

b) as derived in Eqn. (5). Note that here Y-Axis is negative because it is conditional mutual information minus a very large positive constant.

the representations will contain more information about input data besides the information useful for classification at the
initial phase. Although these additional information are not useful for classification at the initial phase, they can be useful for
discriminating between classes of the initial phase and future phases, which will improve CIL when incrementally learning
new classes.

To quantitatively validate that CwD helps preserve more information in representations beyond classification at initial
phase, we adopt the information theoretic quantity I(X;Z|Y), where random variable X is input data, Z is the representation
produced by model given X , and Y ∈ {1, 2, ..., C} is the label of X . I(X;Z|Y) is the conditional mutual information, which
characterizes, how much information is left in Z about X when conditioned on knowing Y . Therefore, larger I(X;Z|Y)
implies that more information about X are preserved in Z besides the purpose of discriminating classes in {1, 2, ..., C}.

In addition, following the exposition in the main text, we denote the covariance matrix of Z|Y = c as K(c). The number
of classes at the initial phase is denoted by C. We view Z and X as discrete random variable1. In addition, we assume
that PZ|Y (z|c) is a quantized Gaussian distribution. That is to say, although Z|y = c is a discrete random variable, its
probability mass function is infinitely close to the density function of a Gaussian distribution pZ|Y (z|c). Therefore, we
shall have: PZ|Y (z|c) = pZ|Y (z|c)δ.

To start with, we study I(X;Z|Y = c), which is the mutual information between X and Z conditioned on Y being a
specific class c:

I(X;Z|Y = c) = H(Z|Y = c)−H(Z|X,Y = c)

= H(Z|Y = c) + 0 (Z is deterministic conditioned on X .)

=
∑
z∈Z

PZ|Y (z|c)δ log
1

PZ|Y (z|c)δ

≈
∫
Z
−pZ|Y (z|c) log pZ|Y (z|c) + log

1

δ

= a log det(K(c)) + b (closed-form solution of differential entropy on Gaussian variables.)

= a

d∑
i=1

log λ
(c)
i + b,

(4)

where a, b are positive constant. Furthermore, we assume that probability of one sample being any class are the same, which

1This is reasonable because as we know, each pixel of an image is represented by 3× 8 = 24 bits, which makes an image a discrete random variable.

further leads to:

I(X;Z|Y) =

C∑
c=1

p(Y = c)I(X;Z|Y = c)

= a
1

C

C∑
c=1

d∑
i=1

log λ
(c)
i + b.

(5)

To this end, we have obtained an estimation on I(X;Z|Y) given Eqn. (5).

Based on what we have derived in Eqn. (5), we can visualize 1
C

∑C
c=1

∑d
i=1 log λ

(c)
i as an proxy of I(X;Z|Y). In this

way, we can get to know how I(X;Z|Y) varies for model trained with different CwD coefficient (i.e., η in eq. (9) of main
text). Results are shown in Fig. 1.

As can be seen, with larger η, I(X;Z|Y) consistently increase. This means that as we increase η, representation Z will
contain more information about X besides information useful for classification at initial phase. Although these additional
information are not useful for classification at initial phase, they could be useful for discriminating between classes of initial
phase and future phases. In this way, CwD might be beneficial for incrementally learning new classes.

We leave more systematic and rigorous studies on why CwD can help CIL as future works.

C. Analysis on Why CwD Coefficient Being Too Large is Bad (Main text Sec. 3.3)

In the third ablation study of Sec. 3.3 of main text, we ablate how the CwD Coefficient (i.e., η in eq. (9) of main text)
affect the improvements brought by CwD. From the results, we find that as we increase η, performance gain brought by CwD
will eventually decrease when η is too large.

To understand this phenomenon, we define the volume occupied by representations of class c as V (c). By assuming
representations of class c are Gaussian distributed, we have:

V (c) ∝
d∏

i=1

λ
(c)
i , (6)

where (λ
(c)
1 , ..., λ

(c)
d) are eigenvalues of the covariance matrix of representations of class c. This is based on the geometric

interpretation of eigenvalues of covariance matrix. Further, combining Eqn. (6) with Eqn. (4), we have:

log V (c) ∝
d∑

i=1

log λ
(c)
i ∝ I(X;Z|Y = c). (7)

Based on Eqn. (7) and the observation in Sec. B that I(X;Z|Y = c) consistently increase with increasing η, we know that
representations of class c will occupy more volume in representation space when η increase. Therefore, when η is too large,
representations of initial phase classes will occupy too much space, causing large overlaps with classes in future phases.

D. Extended Visualization on Figure 1 of Main Text

More Details on Setups in Figure 1 of Main Text. For the two-phase CIL setting, each phase contains 2 classes from
CIFAR100. We train an AlexNet model for visualization. The representation dimension of AlexNet is set to 3 for convenience
of visualization. Representations are normalized to unit sphere as done in LUCIR [2].

Extended Visualizations. Here, we extended visualization of Figure 1 (a) and Figure 1 (d) of main text. Although for
these two figures, the model is only trained on the 2 classes of initial phase, we visualize data representations of all four
classes. Results are shown in Fig. 2.

Surprisingly, from the figure, we can see that when naı̈vely traiend on the 2 classes of initial phase, data representations
of the other 2 classes (i.e., class 3 and class 4) also only lies in the long and narrow region between representations of class 1
and class 2. However, after applying our CwD, data representations of class 3 and class 4 are also more uniformly scattered
in representation space. These phenomenon further suggest that applying our CwD can enforce representation to preserve
more information about input data, and thus benefit CIL.

Phase 0: Phase 1:

(a) Naive Training (b) CwD

Figure 2. Visualization of representations (normalized to the unit sphere) in a two-phase CIL setting (learning 2 classes for each phase).
(a) Naı̈ve training at the initial phase (a.k.a., phase 0) but visualize on data of both phase 0 and phase 1 (i.e., including all 4 classes). The
model has not been trained on class 3 and class 4, but data representations of these class still lie in a long and narrow region between
representations of class 1 and class 2. (b) Training with CwD at the initial phase (a.k.a., phase 0) but visualize on data of both phase 0 and
phase 1. With our CwD, not only representations of class 1 and class 2 scatter more uniformly, representations of class 3 and class 4 also
scatter more uniformly in the space.

E. More Visualizations on Other Classes (Main text Sec. 2.2)
In the Sec. 2.2 of main text, based on ImageNet100, we generate four subsets containing 10/25/50/100 classes, where the

subset with more classes contains the subset with fewer classes (the 10 classes of the first subset are shared by all 4 subsets).
Based on these four subsets, we train four ResNet18 models. Next, given the four ResNet18 models trained on different
number of classes, we visualize α

(c)
k for representations of one of the 10 shared classes. Here, we provide the visualization

for the other 9 classes. The results are shown in Fig. 3. As can be observed, for the other 9 shared classes, curve of α(c)
k

show the similar trend as class 1 shown in the main text, i.e., for every fixed k, α(c)
k consistently decrease as the model being

trained with more classes. These results further validated our observations mentioned in main text Sec. 2.2: as the model
being jointly trained with more number of classes, representations of each class scatter more uniformly.

F. Comparison with Other Decorrelation Methods.
As we mentioned in the main text, there are some works in other fields that utilized feature decorrelation for other purposes

(e.g. boosting generalization). Here, we provide comparison between CwD and some of other decorrelation methods [1, 3]
under CIL setting.

Specifically, based on LUCIR, we first use a ResNet18 to learn 50 classes of ImageNet100 at the initial phase, and then
learn 10 new classes per phase. We apply DC [1], SDC [3], and CwD at the initial phase, respectively (see Tab. 1). Our
results show that although adding DC and SDC at initial phase can also boost CIL performance due to their decorrelation
effects, the improvement brought by CwD is larger. The advantage of CwD is possibly because treating each class separately
can better mimic representations of oracle model.

Methods LUCIR +DC +SDC +CwD (Ours)
Acc. 70.60±0.43 71.39±0.21 71.52±0.40 71.94±0.11

Table 1. Comparing CwD with other decorrelation methods. Average Incremental Accuracy (%) is reported. All results (mean±std)
are averaged over 3 runs.

G. Why not apply CwD in “later phases”?
Based on our observations, adding CwD to the later phases is unnecessary. This is because once we apply CwD at the

initial phase, representations of later phase classes will automatically be decorrelated. To see this, we apply eigenvalue

(a) class 2 (b) class 3 (c) class 4

(d) class 5 (e) class 6 (f) class 7

(g) class 8 (h) class 9 (I) class 10

Figure 3. Visualization on how α
(c)
k changes with increasing k for models trained with different number of classes. α

(c)
k curve

generated by the model trained on 10/25/50/100 classes are denoted by blue/orange/green/red, respectively. From left to right, top to
bottom are figures based on representations of class 2 to 10, respectively. The figure generated by representations of class 1 is shown in the
main text.

analysis as in Sec. 2.2 of our paper. We analyze representations of a class learned at a later phase with the following three
models: 1) naı̈ve LUCIR model incrementally learned all classes; 2) LUCIR with CwD at initial phase; 3) oracle model.
Results are shown in Fig. 4. Our results show that even though we only apply CwD at initial phase, representations of the
class learned at later phases will also mimic oracle model.

Figure 4. Visualization of how α
(c)
k defined in Eqn. (3) (of the main paper) varies with increasing k for different models.

H. What If Keep Increasing β in Fig. 2 in Main Paper.
According to our experiments, β > 15 (e.g. β = 30) yields similar performance as β = 15. Results are shown in Fig. 5.

50 60 70 80 90 100
60

65

70

75

80

85
LUCIR
beta=5
beta=10
beta=15
beta=30

20 40 60 80 100
40

50

60

70

80

90 LUCIR
beta=5
beta=10
beta=15
beta=30

Figure 5. Exploratory experiments the same as Fig. 2 in main paper. β = 30 is added comparing to Fig. 2 of main paper. As one can
observe, β = 30 yields approximately the same results as β = 15.

References
[1] Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv Batra. Reducing overfitting in deep networks by decorre-

lating representations. arXiv preprint arXiv:1511.06068, 2015.
[2] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier incrementally via rebalancing. In

Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pages 831–839, 2019.
[3] Wei Xiong, Bo Du, Lefei Zhang, Ruimin Hu, and Dacheng Tao. Regularizing deep convolutional neural networks with a structured

decorrelation constraint. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 519–528. IEEE, 2016.

	. Proof of Proposition 1 (Main text Sec. 2.3)
	. More Analysis on Why CwD Improves CIL
	. Analysis on Why CwD Coefficient Being Too Large is Bad (Main text Sec. 3.3)
	. Extended Visualization on Figure 1 of Main Text
	. More Visualizations on Other Classes (Main text Sec. 2.2)
	. Comparison with Other Decorrelation Methods.
	. Why not apply CwD in ``later phases''?
	. What If Keep Increasing in Fig. 2 in Main Paper.

