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1. Introduction
This supplementary material includes the following contents:
• Detailed network architectures of BMNet and BMNet+.
• Discussion on why decomposing the original bilinear metric with one transformation matrix into two separate ones for

exemplar and query (Sec. 3.1, page 3).
•More visualizations of dynamic channel attention weights for different categories (Sec. 3.2, page 4).
• More visualizations of density maps and counting results predicted by our methods and the previous state-of-the-art

(Sec. 4.1, page 6).
• Qualitative evidence to show the benefit of combing query features with similarity maps for final counting regression

(Sec. 4.4, page 8).
• The advantage of self-similarity module under few-shot scenarios (Sec. 4.3, page 8).

Note that the experiments in this material are conducted based on FSC147 dataset [3]. For clarity, we use notations in the
main body of the paper: z = F (Z) for the exemplar feature, xij = Fij(X) for the channel feature in query feature maps
F (X) at spatial position (i, j).

2. Network Architecture
Here we detail the modules within our network. Our code is at https://tiny.one/BMNet

2.1. Feature extractor

The configuration of feature extractor is shown in Fig. 1. We use the first four blocks of ResNet-50 [1] as the shared
backbone for exemplar and query image as in FamNet [3]. The backbone outputs downsampled feature map whose size is
1/16 of the original query image. Then, for the feature maps of each query image, we add an 1 × 1 convolution layer to
reduce its channels from 1024 to 256. For the feature maps of each exemplar, they are first processed with global average
pooling and then mapped via a single linear layer into a 256-dimensional feature vector.

2.2. Self-similarity Module

The configuration of self-similarity module is shown in Fig. 2. Both the input and output of this module are a sequence
of feature vectors w.r.t. the exemplar and query image. Suppose we have n exemplars yielding F (Z) ∈ Rn×d and one query
image yielding F (X) ∈ Rd×h×w. In this case, the input sequence IS is a feature set of d-dimensional exemplar features and
query features, whose cardinality is hw + n. First, scale embedding is injected into IS, which yields a sequence denoted
by EIS (refer to Sec. 3.4 in the main paper for details). Then following the standard pipeline in self-attention [5], EIS is
projected to query Qss, key Kss, and value Vss with three matrices Wq,Wk, and Wv . Here the subscript ss denotes self-
similarity. Then we obtain self-similarity matrix A = softmax(QT

ssKss) where A ∈ R(hw+n)×(hw+n). A helps aggregate
the features in value Vss via VssA. Afterwards, the sequence VssA is added back into the original input sequence with a
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Figure 1. Feature extractor in BMNet and BMNet+. The exemplar and query image are processed with the same backbone as in
FamNet [3] but with two different post-processing heads. The ReLU activation after each convolution layer is omitted for simplification.
Global AP denotes global average pooling. Conv denotes convolutional layer, whose parameters stand for kernel size (the 1st row),
output channel dimension (the 2nd row), and stride (the 3rd row). Linear denotes fully connected layer, whose parameters stand for input
dimension (the 1st row) and output dimension (the 2nd row). The same hereinafter.
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Figure 2. Self-similarity module. First, scale embedding is injected into the input sequence. Then each feature in the sequence aggregates
the information from the rest features via self-attention and is added back to refresh the original feature.
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Figure 3. Dynamic similarity module. We add a feature selection over transformed exemplar feature so that the original bilinear similarity
metric is dynamically adjusted according to exemplar-specific information.

learnable ratio γ to obtain a refreshed sequence. γ is initialized by zero so that the self-attention module will not affect the
original features (i.e., Vss) in the early training stage. Finally, we re-split the result sequence into exemplar features and query
ones, whose size is the same as that of the input sequence.

2.3. Similarity Metric

Bilinear Similarity Metric. Our bilinear similarity metric contains two transform matrices P and Q with their corre-
sponding bias, implemented by two linear fully connected layers yielding 256 output channels.
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Figure 4. Counter in BMNet and BMNet+. UP×2 denotes bilinear upsampling operation with a scale factor of 2.

Similarity Metric Val MAE Val MSE Test MAE Test MSE

BM-O 19.09 66.19 16.51 89.65
BM-64 19.99 69.00 16.80 86.94
BM-128 17.60 63.15 15.95 98.28

BM-256 (default) 19.06 67.95 16.71 103.31

Table 1. The comparison between the original bilinear similarity metric BM-O and our modifications BM-k where k = 64, 128, 256.

Dynamic Similarity Metric. The dynamic similarity metric adds a feature selection module over Qz + bz (the exemplar
feature transformed with Q). It consists of a three-layer perceptron (Linear-ReLU-Linear) as detailed in Fig. 3. Additionally,
we add a tanh activation after the feature selection module and add a bias of 1 to the output weights so that the weights are
limited within the range [0, 2].

2.4. Counter

As shown in Fig. 4, the counter consists of layers of convolutions and bilinear upsampling. With this module, the predicted
density map is recovered to the same size as that of query image, which is the common choice in previous methods [3, 4].

3. The Potential of Decomposing Original Bilinear Similarity
Given two vectors xij ∈ Rd×1 and z ∈ Rd×1, the bilinear similarity metric derived from the bilinear model [2] works

in the form xT
ijWz, where W ∈ Rd×d is a learnable matrix. In our BMNet, we decompose it into two transform matrices

P ∈ Rd×k and Q ∈ Rd×k for exemplar and query image. Here we test BMNet with different settings: the originally not
decomposed (BM-O), k = 64 (BM-64), k = 128 (BM-128), and k = 256 (BM-256). The results are reported in Table 1. First
compare our decomposed BM-k with different settings of k. It can be observed that BM-128 achieves the best performance,
which shows the potential of our method with careful parameter tuning. Then compare our decomposed BM-k (especially
BM-128) with BM-O. It can be observed that the decomposition operation brings benefit. We suppose it might indicate that
learning separate transformation matrices for exemplar and query image may produce more fine-grained metrics and hence
present better results. Here we choose k = d = 256 as our default setting since more dimensions may contain more patterns
to facilitate the following dynamic feature selection module. Careful parameter tuning is not our focus in this work.

4. Visualizations of Dynamic Channel Attention Weights
More visualizations of dynamic channel attention weights are shown in Fig. 5. We visualize the mean channel attention

weights of some visually dissimilar categories and similar categories. It can be observed that for dissimilar categories,
channel attention weights exhibit obvious differences on specific channels, while they show more consistency for visually
similar categories. This justifies that dynamic similarity metric learns to focus on discriminative patterns for each exemplar.

5. Visualizations of Predicted Density Maps and Counting Results
We add more visualizations of predicted results in Fig. 7 and Fig. 8 to show the advantage of our proposed BMNet and

BMNet+ over the previous state-of-the-art FamNet+ [3].

6. The Benefit of Adding Query Features for Counting Regression
In the illustration of main pipeline (cf. Fig. 2 in the main paper), the similarity map is concatenated with query features

before fed into count regressor. And in Sec. 4.4 of the main paper, we quantatively show the benefit of adding query features.
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Figure 5. Comparison of mean dynamic channel attention weights for visually dissimilar categories and similar categories. In each column
case, the short red line splits the channel attention weights for two different categories. Inconsistent attention weights for the two categories
exhibit fault lines, which is accentuated between dissimilar categories (the red boxes).
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Figure 6. Visualizations for BMNet with and without adding query features before the count regressor.



Number of Exemplars Self-similarity Val MAE Val MSE Test MAE Test MSE

1 Without 19.92 71.58 17.08 96.71
1 With 17.89 61.12 16.89 96.65

2 Without 18.86 69.63 15.97 101.34
2 With 16.03 58.65 16.16 97.18

3 Without 17.95 68.02 15.46 100.36
3 With 15.74 58.53 14.62 91.83

Table 2. The benefit of self-similarity module under few-shot scenarios.

Here we additionally present some qualitative results in Fig. 6 to help understand the benefit. As can be observed, when only
using similarity map for count regression, the model tends to predict false positive response on background textures, e.g.,
wall in the first row or grass in the second row. However, with the semantic information contained within the query features,
the model can better distinguish the background textures and instances, and correct the above mistakes.

7. The Benefit of Self-similarity Under Few-shot Scenarios
Class-agnostic counting in the current benchmark is a few-shot task since the number of exemplars within each test query

image is limited to 3 in FSC147 dataset. In this few-shot scenario, intra-class variation imposes challenge on the algorithms
as stated in the main paper. The aim of this section is to show that, our Self-Similarity Module with scale embedding (SSM)
can follow its design to address this challenge.

Specifically, we test our method BMNet+ with or without SSM when the number of exemplars n is limited, i.e., n = 1, 2, 3.
The results are reported in Table 2. It can be observed that, SSM offers help in all the cases, which justifies our proposition.
It is also worth mentioning that, executing SSM when n = n1 can achieve comparable (cf. test MAE) even better (cf. val
MAE) performance than removing SSM when n > n1. I.e., in the test scenarios, our SSM brings more robustness towards
the intra-class variation than directly increasing exemplar numbers.
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Figure 7. More visualizations of density maps and counting results predicted by different methods.
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Figure 8. More visualizations of density maps and counting results predicted by by different methods.
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