
SemanticStyleGAN: Learning Compositional Generative Priors for Controllable
Image Synthesis and Editing (Supplementary Material)

Yichun Shi Xiao Yang Yangyue Wan Xiaohui Shen

{yichun.shi,yangxiao.0,wanyangyue,shenxiaohui.kevin}@bytedance.com

ByteDance Inc., USA

https://SemanticStyleGAN.github.io

A. Implementation Details
A.1. Fusion with Transparent Classes

Following Sec 3.1 in the main paper, a coarse seman-
tic mask m is fused from pseudo-depth maps, which is
further used to aggregate local feature maps. In general
cases, the aggregation can be simply achieved by computing
f =

∑K
k mk � fi, where the frontal class in the semantic

mask will be chosen for the output feature. However, in the
case of transparent classes, this formulation could be prob-
lematic. For example, although the whole eye area could be
labeled as glasses in the semantic masks, we are still able
to see the skin behind it. Thus, we treat such transparent
classes separately during feature aggregation. In particular,
we use a modified mask:

m̃k(i, j) =
1NT (k) exp(dk(i, j))∑K
k′ 1NT (k′) exp(dk′(i, j))

+ 1T (k)mk(i, j),

(1)
where 1T (k) is an indicator function that equals 1 if k is
a transparent class and 0 otherwise. 1NT (k) is the oppo-
site indicator function for non-transparent classes. The first
part of Eq. (1) here means that we first aggregate the fea-
tures without the transparent classes. Then in the second
part of Eq. (1), we add the transparent features using their
their original weights in mask m. In this way, the feature
map will not be affected if there are no transparent classes.
If there are, they would be added onto the feature map as
additional residuals. Note that this formulation assumes
that transparent classes do not overlap with each other. In
our experiments, we set glasses and earings as transparent
glasses. In fact, the model can also be trained stably by
simply using the original mask m for fusion, but the texture
behind transparent classes could be distorted.

A.2. Architecture Details

As shown in Fig. 3 in the main paper, each local genera-
tor is a modulated MLP (implemented by 1×1 convolution)

64x64

ConvBlock
32x32→64x64

Feature Map

resize

16x16

ConvBlock
64x64→128x128

ConvBlock
16x16→32x32

concat

ConvBlock
128x128→256x256

64x64
Coarse Mask

Figure 1. Details of the render net. Here, we take 256×256
model as the example. A “ConvBlock” is a StyleGAN2 convo-
lution block that have 2 convolution layers. We remove the style
modulation and add a linear segmentation output branch in each
convolution layer. ⊕ indicates upsampling and summation.

that has 10 layers. The input and output feature maps are
both of size 64× 64. All the hidden layers has 64 channels.
The Fourier feature at the input is first transformed into the
hidden feature map with a linear fully connected (FC) layer.
The “toDepth” layer is a FC layer that outputs a 1-channel
pseudo-depth map. The “toFeat” is a FC layer that outputs
a 512-channel feature map. To encourage the disentangle-
ment between shape and texture, we stop the gradient be-
tween shape and texture layers except for the background
generator. We also fix the pseudo-depth map of background

https://SemanticStyleGAN.github.io


R
ea

l /
 F

ak
e

FC
 L

ay
er

s

co
nc
at
st
d.

RGB Image

Segmentation

Residual Blocks
256x256 → 4x4

Residual Blocks
256x256 → 4x4

Figure 2. Details of the dual-branch discriminator. The “Residual
Blocks” are the convolution layers. The image branch and seg-
mentation are symmetric except the input channels. “concat std.”
is the step to of calculating standard deviation. The discriminator
would be equivalent to StyleGAN2 discriminator if we remove the
segmentation branch.

generator to be all 0s.
The detailed architecture of render network is shown

in Fig. 1. Note that there is an upsampling and residual
operation every layer for the segmentation mask, so ∆m is
not explicitly computed. Instead, we calculate Lmask by
the difference between downsampled output segmentation
and coarse mask m.

The detailed architecture of discriminator is shown in
Fig. 2. It is similar to StyleGAN2 discriminator except that
we add an additional segmentation branch that is symmetric
to image branch. During fine-tuning, we remove this branch
and the discriminator reduces to an image discriminator.

A.3. Efficiency

The 256×256 and 512×512 models are trained on 4 and
8 32GB Tesla V100 GPUs, respectively. For the 512×512
model, our model takes about two and a half day to train
150,000 steps with a batch size of 32 on 8 32GB Nvidia
Tesla V100 GPUs, where the best model is then selected.
For inference, it takes 0.137s for our model to generate an
image on a single GPU without parallelizing local genera-
tors.

B. Additional Discussion
Thanks to the reviewers, we provide additional discus-

sions here to address some potentially shared concerns.

StyleSpace Wu et al. [9] showed that there exists an S
space in the StyleGAN which is more locally disentangled
than the W+ space that we used in the main paper. How-
ever, in spite of good editing results, their method can only
control limited attributes by tuning individual feature chan-
nels. It does not learn additional attributes from given la-
bels. It is not proved yet that one can achieve the same de-
gree of local disentanglement if latent editing methods are

B
al

d
Sm

ile

Figure 3. Results of InterFaceGAN on the S space of StyleGAN2.

original hair 1 hair 2 hair 3 hair 4 hair 5 hair 6

SEAN[69]

Ours
(Texture)

Ours
(Texture
+Shape)

Figure 4. Mask-conditioned models [69] can only transfer texture.

applied to the whole S space. Here, we briefly conduct such
an experiment by applying InterFaceGAN to the S space of
the original StyleGAN2. As shown in Fig. 3, S space still
could suffer from spatial entanglement.
Mask-conditioned Models and StyleMapGAN Mask-
conditioned image translation models, such as SEAN [10]
can be applied to local editing since they also learn a latent
space for each semantic area. However, conditioned on a
fixed semantic mask, their editing is restricted to the tex-
ture of each area (See Fig. 4). Changing the shape would
require manual effort. In contrast, our unconditional model
can control both the shape and texture with latent codes.
We also note that our model, without using segmentation
inputs, achieves a much lower FID (6.43) on CelebA-HQ
than [10] (17.66) and [8] (22.43). StyleMapGAN [5] has
also shown the ability of local editing on synthesized im-
ages. However, by using a stylemap pyramid, it requires the
editing area as an input, and the editing only happens to the
texture in that area, a similar problem as SEAN. In contrast,
our method is automatic and not restricted to fixed pixels.

C. Style Mixing and Additional Results
In the main paper, we showed that the proposed model

can interpolate smoothly in a local latent space. Here, we
show results on more fine-grained style mixing using our
model. Different from StyleGANs [2–4], we can conduct
style mixing between local generators to transfer a certain
semantic component from one image to another. This con-
ducted by transferring both the shape code wk

s and texture



code wk
t . Fig. 5 shows the results of semantic style mix-

ing using our model trained on CelebAMask-HQ [6]. Be-
sides the local latent codes, we also show the transferring
results of the coarse structure code wbase. It can be seen
that our model is able to transfer most local component
styles between images, including small components such
as eyes and mouth. However, it is also observable that the
coarse structure code is currently encoding some informa-
tion about these local components, such as expression and
hair. Although a user or developer is able to change the
number of coarse structure codes dynamically during test-
ing (and even manipulate all the layers in a local genera-
tor), we believe it would be beneficial to further regularize
the information in the coarse code in the future. Fig. 6 and
Fig. 7 show the semantic style mixing results of a model af-
ter transfer learning (on BitMoji dataset [1]) and the model
trained on DeepFashion dataset [7]. A similar effect can be
seen on the DeepFashion that the coarse structure would
affect certain components. Also, we see that sometimes
the hair color is affected by the background on this dataset.
Since the head in this dataset is rather small, we believe
such entanglement is caused by the low-resolution (16×16)
feature map that was fed into render network for blending,
which is originally selected for face datasets. Further tuning
the hyper-parameters of the render net might alleviate such
issues.

Fig. 8 and Fig. 9 show more results on randomly sam-
pled images and pseudo-depth maps, respectively Figs. 10
to 13 show more results on real face editing using our model
and original StyleGAN2. As mentioned in the main paper,
we see that StyleFlow is more sensitive to data imbalance
and less robust. Taking bangs for instance, it tries to re-
duce the hair on the side but not in the front for our model.
For beard, it tries to make face skin look darker for our
model while completely fails on the original StyleGAN2.
Note that we re-train both StyleFlow and InterFaceGAN us-
ing newly sampled images and our own attribute prediction
model. Overall, we can observe that our model achieves
much more localized control when editing output images.

References
[1] Bitmoji dataset. https : / / www . kaggle . com /

mostafamozafari/bitmoji-faces/version/1,
2013. Released under CC BY 4.0. 3

[2] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. arXiv:2106.12423, 2021. 2

[3] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 2

[4] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In CVPR, 2020. 2

[5] Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, and
Youngjung Uh. Exploiting spatial dimensions of latent in
gan for real-time image editing. In CVPR, 2021. 2

[6] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.
Maskgan: Towards diverse and interactive facial image ma-
nipulation. In CVPR, 2020. 3

[7] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou
Tang. Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In CVPR, 2016. 3

[8] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In CVPR, 2019. 2

[9] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace
analysis: Disentangled controls for stylegan image genera-
tion. In CVPR, 2021. 2

[10] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
Sean: Image synthesis with semantic region-adaptive nor-
malization. In CVPR, 2020. 2

https://www.kaggle.com/mostafamozafari/bitmoji-faces/version/1
https://www.kaggle.com/mostafamozafari/bitmoji-faces/version/1


Coarse Structure Background Face (skin) Eyes Eyebrows Mouth Hair

Figure 5. Local style mixing of the model trained on CelebAMask-HQ. The first column shows randomly sampled images for editing. The
remaining columns show the results of mixing local styles using the reference images in the first row.



Coarse Structure Face (skin) Eyes Eyebrows Mouth Hair

Figure 6. Local style mixing of the model fine-tuned on the BitMoji dataset. The first column shows randomly sampled images for editing.
The remaining columns show the results of mixing local styles using the reference images in the first row.



Coarse Structure Background Hair Up Bottom

Figure 7. Local style mixing of the model trained on the DeepFashion dataset. The first column shows different randomly sampled images
for editing. The remaining columns show the results of mixing local styles using the reference images in the first row.



Figure 8. Example generated images and using our 512×512 trained on CelebAMask-HQ. On the right of each generated photo is the
refined segmentation mask output by the model.



Im
ag

e
Ps

ue
do

-d
ep

th
Se

gm
en

ta
tio

n
Im

ag
e

Ps
ue

do
-d

ep
th

Se
gm

en
ta

tio
n

Im
ag

e
Ps

ue
do

-d
ep

th
Se

gm
en

ta
tio

n
Im

ag
e

Ps
ue

do
-d

ep
th

Se
gm

en
ta

tio
n

Figure 9. Illustration of compositional synthesis. Starting from background, we gradually add more components into the feature map.
The second row of each sample shows the pseudo-depth map of each corresponding component used for fusion. During synthesis, all
pseudo-depth maps are fused without an order.



Input
Inversion

(StyleGAN2) StyleFlow InterFaceGAN
Inversion

(Ours) StyleFlow+Ours InterFaceGAN+Ours

Figure 10. Results of GAN inversion and editing for the smile attribute. For each method, we show the inversion result of Restyle encoder,
the edited image and the difference map between them.

Input
Inversion

(StyleGAN2) StyleFlow InterFaceGAN
Inversion

(Ours) StyleFlow+Ours InterFaceGAN+Ours

Figure 11. Results of GAN inversion and editing for the bald attribute. For each method, we show the inversion result of Restyle encoder,
the edited image and the difference map between them.



Input
Inversion

(StyleGAN2) StyleFlow InterFaceGAN
Inversion

(Ours) StyleFlow+Ours InterFaceGAN+Ours

Figure 12. Results of GAN inversion and editing for the bangs attribute. For each method, we show the inversion result of Restyle encoder,
the edited image and the difference map between them.

Input
Inversion

(StyleGAN2) StyleFlow InterFaceGAN
Inversion

(Ours) StyleFlow+Ours InterFaceGAN+Ours

Figure 13. Results of GAN inversion and editing for the beard attribute. For each method, we show the inversion result of Restyle encoder,
the edited image and the difference map between them.


	. Implementation Details
	. Fusion with Transparent Classes
	. Architecture Details
	. Efficiency

	. Additional Discussion
	. Style Mixing and Additional Results

