
Appendix
A. Network Structure

We take the structure of the generator for 256x256 image as
an example and illustrate the model structure in detail in Fig. 13.
Note that the mapping from z to w are an MLP which is the same
as StyleGAN2 [20], and both z and w are 512-dimensional. The
whole structure of the decoder is the same as StyleGAN2 except
that the skip connection is added, which is denoted as blue arrow.
Since the w is operated actually at the conv-layer after each feature
map, so the position of the arrow from w is shown at the end of
each feature map in the decoder. The skip connection will add the
feature of the encoder to the corresponding feature of the decoder.
The encoder is basically the inverse structure of the decoder, and
the feature size and dimension are shown in Fig. 13, which are
obtained through convolutional layers. The omitted layers in the
encoder follow the same rule that the resolution will reduce twice
and the dimension will increase twice at maximum 512 dimension
every two conv-layers.

B. Implementation Details
The whole project is implemented with Pytorch [30].

B.1. Multimodal Image Editing
The model for visualization and the comparison methods are

for 256x256 images. The input image is normalized to (�1, 1)
The model is optimized by Adam [21] with learning rate 0.0025,
�1 = 0, �2 = 0.99. We totally train the model for 5 million
images, with batch size 32 on 8 V100 GPUs for 1 day. We also
trained the generator for 512x512 images for language-guided im-
age editing.

B.2. Language-Guided Image Editing
We use the pretrained generator for 512x512 images.
Supervised LGIE. The image encoder is ResNet50 [13], text

encoder is the text transformer from the CLIP model [33]. The
image resolution is 512x512 and the input image is normalized
to (0, 1) The model is trained with Adam [21] with learning rate
0.0001, �1 = 0.9, �2 = 0.999.

Zero-shot LGIE. The editing process is optimized with the
same optimizer and hyperparameter as the GAN inversion process
in StyleGAN2 [20]. Moreover, the balance weight � is flexible.
We will output all the edited results given different � ranging from
0.1 to 0.5 and then we select the best one.

B.3. Retrieval and Clustering
We need to conduct the conditional GAN inversion for all the

dataset to obtain the w to support the style retrieval and clustering.
Therefore, to accelerate the speed, we inverse the w correspond-
ing to 128x128 resolutional images. We follow the same training
setting for the inversion as StyleGAN2 [20]. The average time for
such inversion is 30s per sample. Then we use KNN with cosine
distance on the W space for retrieval and k-means with cosine
distance on the W for clustering. Even though the w is only for
128x128 generator, it will not harm the output performance be-
cause in this stage we do not use w to generate images.
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Figure 13. The details of our encoder and the skip connection.

B.4. Examplar-Based Image Editing
We conduct the conditional GAN inversion for 512x512 res-

olutional generator, and transfer the inverted w to new 512x512
resolutional images.

C. Effect of w at Different Layers
We analyze the effect of w at different layers using SeFa [36].

We compute the principle directions of the W space from the pa-
rameters of the affine matrix in the designated layers. For a given
principle direction n and the w0 of the input image, we traverse
the W space using a scalar ↵ as

w = w0 + ↵n. (4)

Here we analyze the 256x256-resolutional generator with 14-layer
decoder, where 12-14 conv-layers have output feature map size of
256x256, 10-11 conv-layers 128x128, 8-9 conv-layers 64x64, and
1-7 conv-layers have the size from 4x4 to 32x32. Fig. 14 and 15
show two examples for the traversing at these layers. We can see
that in the high-level layers, the traverse of w exhibits salient color
change, while for the low-level layers (layer 1-7), it does not. This
means that the w in low-level layers will be ignored by the gen-
erator. And at different high-level layers, they seems to be able to
achieve the similar effect, such as the green effect can be achieved
by all the 12-14, 10-11, 8-9 layers in Fig. 14, so it is still not quite
clear to us what editing styles different layers emphasize. And this
could be further studied for future work. Moreover, for different
images, the same direction generally has the same semantic ac-
cording to the comparison of Fig. 14 and 15. However, the same
style effect will overlay the original color style of the image, which
explains why the final styles of the two examples have little differ-
ent.

D. More visual results
D.1. Retrieval

Examples are shown in Fig 16.

D.2. Cluster
More examples are shown in Fig. 17.

D.3. Multimodal Image Editing
More examples are shown in Fig. 18.



D.4. Exemplar-Based Image Editing
More examples are shown in Fig. 19.

D.5. Language-Guided Image Editing
More examples for zero-shot LGIE are shown in Fig. 20. Note

that the flower example does not receive mask input, but it still can
handel local editing. This verifies that our model can understand
the language semantic and the generator has good ability for local
editing.

E. Language-Guided Image Editing
E.1. Supervised LGIE

We further provide more detailed introduction of the dataset,
metrics, and more comprehensive comparison with other methods
collected from [38].
Dataset. MA5k-Req. MA5k-Req [38] augments the language re-
quest to the image pairs in the MIT-Adobe FiveK dataset [3]. It
contains 24,750 image pairs with one language annotation each
and is divided into 17,325/2,475 /4,950 for train/val/test split.
Metrics. We follow the metrics in [38].

• L1 distance directly measures the averaged pixel absolute
difference between the generated image and ground truth im-
age with pixel normalized to 0-1.

• SSIM measures image similarity through luminance, con-
trast, and structure.

• FID measures the Fréchet distance between two Gaussians
fitted to feature representations of the Inception network over
the generated image set and ground truth image set.

• Image variance � measures the language controllability by
computing the pixel variance of 10 output of the same input
image controlled by different languages.

Comparison methods.
• Input: the evaluation between input and target image.
• Bilinear GAN [28], SISGAN [7], TAGAN [29]: these three

methods are trained by learning the mapping between the
caption and image without image pairs. Since there is not
image caption in our task but the paired image and request,
we drop the procedure of image-caption matching learning
but adapt them with the L1 loss between input and target
images.

• Pix2pixAug [43]: the pix2pix model [16] augmented with
language used in [43].

• GeNeVa [9]: a GAN-based dialogue guided image editing
method. We use it for single-step generation.

• RL: an RL approach introduced in [38].
• T2ONet [38]: T2ONet map the language request to a series

of editing operations using weak supervision.
• EDNet [18]: EDNet enforce the language controllability us-

ing cyclic loss.

F. Data Collection
We collect the dataset called Discover-Req, where we augment

the language request that describes what are edited for the before-
and-after images. The whole process obtains the permit and the

L1 # SSIM" FID# �⇥102 "

Target - - - -
Input 0.1190 0.7992 12.3714 -
Bilinear GAN [28] 0.1559 0.4988 102.1330 0.8031
Pix2pixAug [43] 0.0928 0.7938 14.5538 0.5401
SISGAN [7] 0.0979 0.7938 30.9877 0.1659
TAGAN [29] 0.1335 0.5429 43.9463 1.5552
GeNeVa [9] 0.0933 0.7772 33.7366 0.6091
RL [38] 0.1007 0.8283 7.4896 1.6175
T2ONet [38] 0.0784 0.8459 6.7571 0.7190
EDNet [18] - - 9.9500 -
Ours 0.0731 0.8721 5.9791 0.6809

Table 5. Quantitative results on MA5k-Req test sets. �⇥102 means
that the image variance has been scaled up 100 times.

Discover images are allowed for research use. Totally we col-
lected the language annotation for 4423 pairs of images with one
sentence from Photoshop expert and three sentences from ama-
teurs for each pair. The expert are hired from Upwork3 and the
amateurs from ScaleAI4. The annotation quality of the expert is
trustable. To control the quality of amateurs, we only hire those
who pass the annotation test, and the annotation result must be
approved by another worker.

G. Tag List creating
The final tag list is: dark, blue, red, white, vivid, vintage, warm,

brown, clear, clarity, green, natural, yellow, orange, retro, cool,

black, vignette, vibrant.

The steps for creating this tag list is as follows. We firstly create
a prior tag list based on the Adobe Photoshop commonly used style
effect. Next, we tokenize all the annotated sentences in Discover-
Req dataset, stemitize all the tokens, and manually select the style-
like tokens and merge them with the prior tag list. Then we remove
the tag that occurs to most of the image such as bright “contrast”.
Finally, we filter out those tags that occur less than 5 times among
all sentences.

H. Customized Purity
Standard purity is computed for single labeled sample. How-

ever, each of our image pair has been labeled with multiple tags
(the tokenized sentence may contain multiple valid tags). There-
fore, we will extend the computation for purity to support multi-
label situation. Specifically, for each cluster Ci, we firstly con-
struct its corresponding tag pool Ti by collecting all the tag labels
of all the samples in this cluster (the tag pool allows the same tag
to occur many times). Next, for each tag tj in the tag list of length
L, we count tj in each Ti and find the cluster with the maximum
count of tj as Cj . So now we have assigned the tag tj to Cj . Note

3https://www.upwork.com/
4https://scale.com/



that in this way, one cluster might be assigned by multiple tags,
but it does not matter. Then, we count the number of tj in Cj as
Nj and let | · | denote the total number of the elements of a set, the
purity is defined as

purity =

PL
j Nj

PL
j |Cj |

. (5)
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Figure 14. The visualization of the SeFa disentanglement on different layers. We select top-3 principle directions in layer 12-14, 10-11,
8-9 and top-1 direction for layer 1-7.
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Figure 15. The visualization of the SeFa disentanglement on different layers. We select top-3 principle directions in layer 12-14, 10-11,
8-9 and top-1 direction for layer 1-7.



retrieval

Figure 16. The visualization of the image pair retrieval results. The first row is the query pair, and the second to the last row are five
retrieved pairs. For each pair, the left is source and the right is target.
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Figure 17. The visualization of the cluster results. For each image pair, the left is source and the right is target.
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Figure 18. The visualization of the multimodal image editing result. Each column corresponds to the same z, indicating one w has globally
the same editing effect for all the images.
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Figure 19. The visualization of exemplar-based image editing.
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Figure 20. The visualization of the zero-shot LGIE.


