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Figure 1. Precision-recall curves on LSUN bedroom (left) and

combined (right). Number at each point is truncation threshold ψ.

A. Precision and recall (PR) metrics
We measure PR [5] of StyleGAN [4] and ours. We ob-

serve that higher generation quality reported in Table. 1 of

the paper is coming from higher recalls (i.e. diversity). This

makes sense because the diversity can be derived from dedi-

cate generation of fine-details based on distributed activation

by LAP. Since the PR generally have trade-off, we further

compute PR curves with truncation parameter ψ. Specifi-

cally, a lower ψ leading conservative sampling results in a

higher precision and a lower recall [2, 5]. As reported in

Fig. 1, our method significantly outperforms the baseline.

For instance, at the recall of 0.3, our method (ψ = 0.7) pro-

vides 7.3% higher precision than the baseline (ψ = 0.8) on

LSUN bedroom. Note that, the quantities are measured with

50K real and fake samples.

B. Per class evaluation w.r.t. freq. and size
Class-wise performances are measured by relative im-

provement ratios, ( FID of StyleGAN
FID of Ours

) and ( Score of Ours
Score of StyleGAN

), for

FID [3] and PR [5], respectively. We first plot about FID

(based on Table. 3 in the paper) to Fig. 2 (top), and it shows

a tendency that improvements are higher on small and less

frequent objects. For class-wise PR, we evaluate precision

at the equal (actually very close) recall, and vise versa, for

a clear comparison. Specifically, we evaluate precision at

recall of 0.3 (ψOurs = 0.7 and ψStyleGAN = 0.8), and recall at

precision of 0.57 (ψ = 1 for both) on LSUN bedroom, as
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Figure 2. Relative improvements of class-wise FID (upper row) &

precision and recall (lower row) over StyleGAN w.r.t. object size

and frequency on LSUN bedroom.

Dataset Resolution Method FID FSD

LSUN church 2562
StyleGAN 4.34 19.2

StyleGAN (w/ ours) 3.69 14.4

Table 1. Experimental results on LSUN church.

shown in Fig. 2 (bottom). The precision (e.g. visual quality)

has a similar trend with FID, where higher improvements

are achieved by small or less frequent objects. However,

although most recalls are higher than baseline across various

objects, it is hard to tell the same claim for the recall. We

conjecture that high recalls for the large objects are mainly

because they have many fine-detail parts where LAP helps

diverse generation. In other words, the detailed parts of large

objects (e.g. bed rod) are treated similarly with small ob-

ject (e.g. table) by LAP, since GANs are trained in totally

unsupervised way.

C. Results onto LSUN church
We additionally validated on LSUN church, as reported in

Table. 1. Our LAP achieves an FID score of 3.69, improving

0.65 points over a StyleGAN, as well as increases the FSD

score [1] from 19.2 to 14.4. These results confirm again that

our LAP works well on various indoor and outdoor scene.

Note that, we trained all models until the discriminator sees

25M of real images.



St
yl

eG
A

N
St

yl
eG

A
N

(w
/ o

ur
s)

(b) LSUN combined(a) LSUN bedroom (c) COCO-stuff

Figure 3. Samples generated by StyleGAN (top row) and by StyleGAN w/ ours (bottom row). Best viewed in zoom.

D. More qualitative results
Fig. 3 shows that StyleGAN has difficulty in rendering

object-parts. For example, the seat of ottoman (1st col.), legs

of chairs (4th col.) and animal (8th col.) were skipped or van-

ished out. On the other hands, the LAP generated the rectan-

gular shaped ottoman (1th col.), chairs w/ straight legs (4th col.)

or animal whose legs were not faded out (8th col.).
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