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1. Pose Hypothesis Selection
Pose hypothesis selection is done by rendering the object

in the predicted pose and measuring a VSD-like pose con-
sistency score [8]. If only RGB data is available, the score
is defined over per-pixel correspondence error. If depth
is available, per-pixel depth discrepancy is measured. For
consistency, depth values and object sizes are expressed in
millimeters.

Similarly to the main paper, let C : M × SE(3) →
[0, 1]W×H×3 denote 2D-3D correspondences for the ob-
ject rendered in the given pose. Correspondences are de-
fined as Normalized Object Coordinates (NOCS) [19]. Its
inverse C−1 recomputes correspondences to the unormal-
ized object coordinates in the object coordinate system. Let
Ŝ be a predicted binary segmentation with Ŝp indicating
whether a pixel p belongs to the object or not. Function S :
M×SE(3)→ [0, 1]W×H renders a segmentation mask for
a given object pose. Function D :M× SE(3) → RW×H

renders per-pixel depth for a given object pose, whereas D̂
represents the observed depth map. T ∈ SE(3) is object
pose.

Then, in case of RGB, pose consistency is defined as

cons(τ) = avg
p∈Ŝ∩S(T)

{
1, if

∥∥∥Ĉp − C−1
(
C (T)p

)∥∥∥
2
< τ

0, otherwise
(1)

In case of depth, pose consistency is defined as

cons(τ) = avg
p∈Ŝ∩S(T)

{
1, if

∥∥∥D̂p −D(T)p

∥∥∥
2
< τ

0, otherwise
(2)

Consistency is averaged over thresholds τ from 1 to
5mm, and the pose hypothesis with the highest average con-
sistency is selected as the final pose.

Ablation studies presented in Figures 1 and 2 illustrate
how the ADD score changes depending on the minimal dis-
tance between templates in the set of pose hypotheses and

the number of hypotheses. The experiments were conducted
on a small random subset of the data. ”First template ADD”
denotes the ADD reached on the subset of data using the
standard OSOP pipeline without multiple hypothesis. ”Best
possible ADD” denotes the average ADD among all images
in the subset, where for each image the best ADD among
the predicted poses was picked. This sets the upper bound
on what ADD the method can reach with the given number
of pose hypothesis. ”Selected ADD” denotes the ADD of
the poses chosen with the proposed pose selection method.
Experiments on Linemod and Occlusion demonstrate that
the 15 degrees threshold on the distance between templates
works the best, as it eliminates duplicate templates, that
have a low angular distance from each other, and ensures
more diverse hypothesis set. The plots also show that the
ADD of chosen poses stops improving after approximately
25 pose hypotheses. Therefore, we used the threshold of 15
degrees and 25 templates in the experiments.

2. Architecture
In all experiments we used ResNet50 as the feature ex-

tractor. For the first and the third stages, we use feature
maps after layers number 10, 22 and 40. The network
is trained and tested on the full resolution images of size
480× 640. For the image descriptor, this corresponds to fk

of sizes 120×160×256, 60×80×512 and 30×40×1024.
We used 2880 templates for the localization network, which
corresponds to 576 camera locations with 5 in-plane rota-
tions. The object descriptors ok thus has the dimensions
16×36×5×256, 16×36×5×512 and 16×36×5×1024.
The detailed network architecture is visualized in Figure 4
with the detailed architecture of the attention block visual-
ized in Figure 3.

For the second stage, we used approximately 90K tem-
plates as suggested in AAE [17, 18], and map each of them
to the latent space of size 8× 8× 256. Even though the re-
sulting descriptor is of higher dimension than in [18,22], all
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(a) 10 degrees template threshold.

(b) 20 degrees template threshold.

(c) 15 degrees template threshold.

(d) Comparison of ADD with different template thresholds.

Figure 1. Ablation studies on pose hypothesis selection on Linemod dataset dataset [6].

descriptors for all templates still fit on a single GPU, which
enables fast inference. During training, we convert the ro-
tation matrix from the egocentric to allocentric coordinate
system following [13]. This conversion ensures that the vi-
sual appearance of the object is dependent exclusively on
the rotational component of the SE(3) pose. The angle be-
tween rotations is computed as an arcos of quaternions rep-
resenting them. Symmetric objects are ignored during train-
ing. The third stage operates on images of sizes 128× 128.
The detailed network architecture is visualized in Figure 5.

3. Implementation Details
The detector was implemented using Pytorch [15]. A

pre-trained ResNet50 [5] served as feature extractor FFE in
all three stages. The feature extractor was unchanged for the
segmentation and 2D-2D correspondence networks to over-
come the domain gap problem. Only the last block of the
ResNet was fine-tuned for the second stage in the proposed
pipeline. We used the MAGSAC [1] implementation from
OpenCV [3] and point-to-plane ICP from Open3D [24]. All
our experiments were conducted on an Intel Core i9-9900K

CPU 3.60GHz with NVIDIA Geforce RTX 2080 TI GPU.
We trained the networks with the Adam optimizer [11]. The
localization network and the 2D-2D matching network were
trained for 50 epochs which took approximately one day on
a single GPU. The second and third stage networks were
trained for 10 epochs, which took approximately 2 hours.
We render templates at 25 FPS with 128x128 resolution and
models down-sampled to 5K faces. It takes around one hour
to render 90K templates, 40 seconds to render 1K templates
and 200 seconds to render 5K templates.

4. Additional Results and Visualisations
Table 1 provides per-object add score of the proposed

and state of the art methods on the Linemod dataset.
Table 2 shows evaluation of our method on the TLESS

dataset [7]. We followed the Multi-Path AAE [17] evalua-
tion pipeline and ran the 2nd and the 3rd stages of OSOP
on detections from Multi-Path AAE. OSOP convincingly
outperforms Multi-Path AAE and PPF on RGB and RGBD
data respectively. This proves that the matching strategy
does not suffer from object symmetries and heavy occlu-



(a) 10 degrees template threshold.

(b) 20 degrees template threshold.

(c) 15 degrees template threshold.

(d) Comparison of ADD with different template thresholds.

Figure 2. Ablation studies on pose hypothesis selection on Occlusion dataset dataset [2]

Table 1. Percentages of correctly estimated poses w.r.t. the ADD on the Linemod [6] dataset for methods trained on synthetic data. In case
of only RGB input, our method relies on PnP+RANSAC to estimate the pose. Kabsch+RANSAC is used if RGBD data is available.

RGB RGBD

Method SSD6D [10] PfS [21] AAE [18] SSD6D [10] OURS DPOD [23] Ours DPOD [23] AAE [18] Ours Ours PPF [6] Ours Ours SSD6D [10]

Refinement - - - DL [12] - - Mult. Hyp. DL [23] ICP - ICP ICP Mult. Hyp. Mult. Hyp. + ICP ICP

Ape 2.6 7.5 4 - 22.57 35.1 26.05 52.12 24.35 75.64 81.31 86.50 85.19 86.09 -
Bvs. 15.1 25.1 20.9 - 50.41 59.4 55.59 64.67 89.13 88.05 91.02 70.70 93.82 94.64 -
Cam 6.1 12.1 30.5 - 32.30 15.5 36.21 22.23 82.1 64.03 65.28 78.60 68.94 69.34 -
Can 27.3 11.3 35.9 - 42.89 48.8 52.17 77.51 70.82 65.80 68.47 80.20 80.43 80.43 -
Cat 9.3 15.4 17.9 - 34.43 28.1 42.57 56.49 72.18 77.02 80.07 85.40 87.44 87.96 -

Driller 12 18.6 24 - 43.94 59.3 49.57 65.23 44.87 72.14 76.35 87.30 78.45 79.46 -
Duck 1.3 8.2 4.9 - 20.08 25.6 22.16 49.04 54.63 68.28 79.9 46.00 88.27 92.73 -

Eggbox 2.8 100 81 - 73.50 51.2 72.38 62.21 96.62 98.09 98.17 97.00 98.00 98.17 -
Glue 3.4 81.2 45.5 - 42.63 34.6 52.28 38.94 94.18 69.18 69.58 57.20 69.43 69.50 -

Holep. 3.1 18.5 17.6 - 18.19 17.7 18.59 25.55 51.25 70.65 74.05 77.40 86.34 92.72 -
Iron 14.6 13.8 32 - 69.27 84.7 72.30 98.43 77.86 98.25 98.61 84.90 99.39 99.40 -

Lamp 11.4 6.5 60.5 - 27.14 45 27.87 58.35 86.31 43.52 51.26 93.30 39.19 48.49 -
Phone 9.7 13.4 33.8 - 33.63 20.9 39.58 33.79 86.24 62.10 63.88 80.70 65.81 66.05 -

Mean 9.1 25.5 31.4 34.1 39.31 40.5 43.64 54.20 71.58 73.29 76.76 78.86 80.05 81.92 90.9

Time (ms) - - 24 - 96 36 1343 - 224 60 68 - 722 749 100

sions. We used the same networks as in the Linemod exper-
iments.

Tables 3, 4,5 and 6 provide per-object detection statistics
on all four datasets used in the paper.

Figure 6 provides more insights about the detection
quality of the proposed method, by comparing it to the

Precision-Recall curves of OS2D [14] and YOLOv3 [16].
The plots clearly demonstrate the superiority of our method
to OS2D.

Figures 7, 8, 9 10 compare ground truth object outlines
with predicted object outlines.

Figure 11, 12 and 13 compare the naive pixel-wise at-



Table 2. Results on the TLESS- dataset [7] reported according to
the Average Recall (AR) metric of the BOP challenge [8] on the
BOP challenge subset of test images. All methods apart from ours
and PPF [4] require prior training on RGB renderings of target
objects.

Method Train data Refinement AR

CosyPose ICP 0.640
EPOS - 0.467

AAE
synt

ICP 0.487
Multi-Path AAE - 0.310

DPOD - 0.081

Ours + Kabsch

-

- 0.532
Drost, PPF ICP 0.444

Ours + Kabsch ICP 0.435
Drost, PPF ICP 0.404
Ours + PnP - 0.403

tentions versus the thresholded and conditioned attentions
as proposed in the paper. This visual comparison proves
the the usefullness of the proposed operations as they effec-
tively reduce the noise and allow the network to focus on
the true regions of interest.

Figures 14, 15, 16 and 17 provide a visual comparison
of predicted 2D-3D correspondences to the ground truth.
Correspondences are color-coded according to their NOCS
coordinates.

Finally, Figures 18, 19, 20 and 21 demonstrate the qual-
ity of estimated poses.
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Figure 3. Architecture of the attention block, that stacks features
extracted from the attended image features and features from the
correlation between the image and object descriptors. Gray color
represents ResNet blocks, yellow color represents convolutional
layers, red color represent feature maps and descriptors. Better
viewed digitally.
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Figure 4. Architecture of the stage 1 network. Gray color represents ResNet blocks, yellow color represents convolutional layers, red color
represent feature maps and descriptors and green represents attention blocks. Better viewed digitally.
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Figure 5. Architecture of the stage 3 network for dense correspondence matching. Gray color represents ResNet blocks, yellow color
represents convolutional layers, red color represent feature maps and descriptors and green represents attention blocks. Better viewed
digitally.



Table 3. One shot segmentation on all images from the Linemod [6] dataset.

Object 1 2 4 5 6 8 9 10 11 12 13 14 15

Bbox Precision 0.42 0.59 0.31 0.59 0.5 0.29 0.63 0.98 0.44 0.37 0.75 0.21 0.23
Bbox Recall 0.87 0.95 0.71 0.96 0.91 0.83 0.97 0.78 0.7 0.93 0.99 0.69 0.68

Pixel IoU 0.77 0.75 0.58 0.76 0.71 0.74 0.81 0.83 0.62 0.72 0.79 0.64 0.63

Table 4. One shot segmentation on BOP subset of images from the Occlusion [2] dataset.

Object 1 5 6 8 9 10 11 12

Bbox Precision 0.27 0.26 0.43 0.14 0.55 0.36 0.15 0.28
Bbox Recall 0.55 0.56 0.68 0.5 0.86 0.68 0.25 0.76

Pixel IoU 0.51 0.58 0.61 0.68 0.75 0.58 0.38 0.63

Table 5. One shot segmentation on BOP subset of images from the Homebrewed [9] dataset.

Object 1 3 4 8 9 10 12 15 17 18 19 22 23 29 32 33

Bbox Precision 0.23 0.63 0.65 0.52 0.47 0.05 0.39 0.65 0.29 0.09 0.92 0.31 0.58 0.9 0.15 0.51
Bbox Recall 0.63 0.92 0.92 0.79 0.91 0.12 0.89 0.22 0.61 0.24 100 0.82 0.99 0.96 0.38 0.74

Pixel IoU 0.71 0.83 0.77 0.79 0.75 0.64 0.82 0.71 0.55 0.63 0.89 0.72 0.83 0.89 0.57 0.84

Table 6. One shot segmentation on BOP subset of images from the YCB-V [20] dataset.

Object 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Bbox Precision 0.44 0.21 0.51 0.59 0.51 0.55 0.31 0.36 0.27 0.72 0.24 0.18 0.38 0.62 0.09 0.31 0.13 0.81 0.18 0.17 0.9
Bbox Recall 0.98 0.53 0.98 0.91 1 1 0.92 1 0.65 1 0.69 0.63 1 1 0.34 0.76 0.2 1 0.63 0.57 1

Pixel IoU 0.61 0.55 0.75 0.77 0.71 0.85 0.38 0.75 0.49 0.88 0.58 0.53 0.78 0.66 0.58 0.67 0.8 0.77 0.64 0.59 0.85
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Figure 6. Precision-Recall curves for four datasets used in the evaluation on a subset of image. We compare out method to OS2D [14] and
YOLOv3 [16].



Figure 7. Segmentation quality on the Linemod dataset. Left column visualizes ground truth outlines of the visible object parts. Right
column visualizes predicted outlines of the visible object parts.



Figure 8. Segmentation quality on the Occlusion dataset. Left column visualizes ground truth outlines of the visible object parts. Right
column visualizes predicted outlines of the visible object parts.



Figure 9. Segmentation quality on the Homebrewed dataset. Left column visualizes ground truth outlines of the visible object parts. Right
column visualizes predicted outlines of the visible object parts.



Figure 10. Segmentation quality on the YCB-V dataset. Left column visualizes ground truth outlines of the visible object parts. Right
column visualizes predicted outlines of the visible object parts.



Figure 11. Visualization of attention values on the Linemod dataset. The left column provides the original RGB image with the highlighted
target object. The central column shows the raw attentions and the right column visualizes the thresholded and conditioned, as described
in the paper. Rows correspond to different depth of feature extractor.



Figure 12. Visualization of attention values on the Linemod dataset. The left column provides the original RGB image with the highlighted
target object. The central column shows the raw attentions and the right column visualizes the thresholded and conditioned, as described
in the paper. Rows correspond to different depth of feature extractor.



Figure 13. Visualization of attention values on the Linemod dataset. The left column provides the original RGB image with the highlighted
target object. The central column shows the raw attentions and the right column visualizes the thresholded and conditioned, as described
in the paper. Rows correspond to different depth of feature extractor.



Figure 14. Correspondence quality on the Linemod dataset. The left row shows input RGB images with highlighted target objects. Next
two columns show color-coded ground truth and predicted NOCS maps.



Figure 15. Correspondence quality on the Occlusion dataset. The left row shows input RGB images with highlighted target objects. Next
two columns show color-coded ground truth and predicted NOCS maps.



Figure 16. Correspondence quality on the Homebrewed dataset. The left row shows input RGB images with highlighted target objects.
Next two columns show color-coded ground truth and predicted NOCS maps.



Figure 17. Correspondence quality on the YCB-V dataset. The left row shows input RGB images with highlighted target objects. Next
two columns show color-coded ground truth and predicted NOCS maps.



Figure 18. Pose quality on the Linemod dataset. Green 3D bounding boxes visualize the ground truth poses of the object. Color-coded
bounding boxes visualize the predictions. The left column contain the poses obtained with the PnP algorithm, the central column - with
Kabsch, and the poses in the right column are refined with ICP.



Figure 19. Pose quality on the Occlusion dataset. Color-coded bounding boxes visualize the predictions. The left column contain the poses
obtained with the PnP algorithm, the central column - with Kabsch, and the poses in the right column are refined with ICP.



Figure 20. Pose quality on the Homebrewed dataset. Color-coded bounding boxes visualize the predictions. The left column contain the
poses obtained with the PnP algorithm, the central column - with Kabsch, and the poses in the right column are refined with ICP.



Figure 21. Pose quality on the YCB-V dataset. Color-coded bounding boxes visualize the predictions. The left column contain the poses
obtained with the PnP algorithm, the central column - with Kabsch, and the poses in the right column are refined with ICP.
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