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Supplementary material is organized as follows: first, we
provide additional experimental results in Section A; then,
we perform a qualitative analysis of zero-shot text-to-video
retrieval in Section B; and finally, we provide more imple-
mentation details in Section C.

A. Additional Experimental Evaluation
A.1. CLIP Backbone

We additionally tested our model with stronger visual and
text backbones. Namely, we used CLIP backbones (Con-
trastive Language-Image Pre-training) [7] pre-trained on the
large Wikipedia-based image-text WiT dataset. We used the
ViT-B/32 model and extracted one 512-dimensional feature
per second for video and one 512-dimensional feature per
word for text. For both modalities, we adopt features after
projection into the multi-modal embedding space. Perfor-
mance of zero-shot text-to-video retrieval and text-to-video
retrieval after fine-tuning is presented in Table 1. We note
that using CLIP features is especially beneficial for the MSR-
VTT dataset, but performance on YouCook2 also improves
compared to R152 + RX101 and word2vec backbones. We
also note that performance on MSR-VTT after fine-tuning
is coming close to the performance of the CLIP4CLIP [5]
model that, however, is not directly comparable to ours.
Compared to CLIP4CLIP, we are not fine-tuning backbones
and we also are using a smaller MSR-VTT train subset for
fine-tuning (7,000 clips compared to 9,000 clips).

A.2. Action Segmentation

Following [2] we additionally report temporal action
segmentation performance on the CrossTask and Mining
YouTube datasets as proposed in [4]. We measured a frame-
wise video segmentation performance given the order of
actions in a video. Following inference procedure [4] we
computed temporal alignment of video frames based on
similarity matrix to text labels by a Viterbi-decoding. Be-
fore decoding, we transferred the similarity matrix to class
probabilities by applying softmax with temperature 0.05

Method Visual Text FT YouCook2 MSR-VTT
Backbone Backbone R@5↑ R@10↑ R@5↑ R@10↑

Ours R152+RX101 word2vec 40.7 51.3 23.8 31.8
Ours CLIP word2vec 42.7 54.0 29.0 38.7
Ours CLIP CLIP 42.6 54.3 32.5 42.4

CLIP4CLIP CLIP CLIP - - 57.0 66.9

Ours R152+RX101 word2vec ✓ 59.1 70.9 52.1 63.7
Ours CLIP word2vec ✓ 62.1 72.6 60.7 72.7
Ours CLIP CLIP ✓ 62.1 72.9 62.7 75.0

CLIP4CLIP CLIP CLIP ✓ - - 70.7 80.5

Table 1. Text-to-video retrieval on the YouCook2/MSR-VTT in
zero-shot and fine-tune settings with CLIP backbones. As the
video representation, we again use va – the fused video and au-
dio modalities. FT: fine-tuning on downstream task. We include
CLIP4CLIP [5] for completeness but do directly compare because
of different pre-training and a different MSR-VTT train subset.

CrossTask Mining YouTube
Method Recall↑ IOD↑ IOU↑ Recall↑ IOD↑ IOU↑
Mining YouTube [4] - - - - 19.2 9.8
MCN [2] 35.1 33.6 22.2 18.1 32.0 23.1
Ours 39.3 32.5 18.5 19.4 32.7 23.1

Table 2. Evaluation of zero-shot action segmentation on the
CrossTask/Mining YouTube. We report results for “R152 + RX101”
visual backbone (the same as used in MCN [2]).

across all labels over all videos (as we did in NCE during
training). Segmentation performance is measured by an in-
tersection over union IoU = G∩D

G∪D – the ratio between the
intersection of ground truth action G and prediction D and
the union of them – as well as an intersection over detection
IoD = G∩D

D .
In Table 2 we show IoU and IoD for temporal action

segmentation with a recall for step action localization. We
observe that our method shows a marginal boost in temporal
action segmentation on the Mining YouTube dataset while
it does not benefit on the CrossTask dataset. However, we
note that the segmentation evaluation procedure relies on
the given order of steps in a video, while in the CrossTask
dataset about 30% steps are missed and step orders are not
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Fully-supervised baseline [10] 19.1 25.3 38.0 37.5 25.7 28.2 54.3 25.8 18.3 31.2 47.7 12.0 39.5 23.4 30.9 41.1 53.4 17.3 31.6

CrossTask [10] 13.3 18.0 23.4 23.1 16.9 16.5 30.7 21.6 4.6 19.5 35.3 10.0 32.3 13.8 29.5 37.6 43.0 13.3 22.4
HT100M et al. [6] 33.5 27.1 36.6 37.9 24.1 35.6 32.7 35.1 30.7 28.5 43.2 19.8 34.7 33.6 40.4 41.6 41.9 27.4 33.6
MCN 25.5 31.1 39.7 32.7 35.4 36.8 29.0 40.0 28.4 33.8 45.7 27.5 36.1 34.9 39.6 42.6 43.0 29.1 35.1
Ours 30.5 41.2 46.5 46.6 38.9 32.0 19.5 48.9 25.8 33.6 44.7 29.1 40.7 36.9 50.7 44.1 63.1 33.6 39.2

Table 3. Step action localization performance on the CrossTask [10] dataset: recalls corresponding to every specific task.

#blocks #heads hidden s. batch size YouCook2 MSR-VTT
R@5↑ R@10↑ R@5↑ R@10↑

1 64 4096 224× 10 40.7 51.3 23.8 31.8
2 64 4096 224× 5 37.3 47.6 23.2 32.5
2 64 4096 112× 10 38.6 49.8 20.8 28.6
2 32 2048 224× 10 38.1 49.1 22.6 30.9
4 16 1024 224× 10 35.4 46.8 23.7 31.7

Table 4. Evaluation of different fusion transformer architectures.
#blocks stands for a number of transformer blocks, #heads – for
a count of attention heads; hidden s. denotes a hidden size of the
transformer layers (that linearly depends on the number of heads);
batch size denotes a training batch size where x× y means that we
use a batch of x videos and randomly sample y clips per video.

Configuration YouCook2 MSR-VTT
R@5↑ R@10↑ R@5↑ R@10↑

aligned text-audio 37.8 47.2 14.0 20.0
disentangled text-audio 37.2 45.7 17.9 25.0
disentangled text-audio + loss weighting 40.7 51.3 23.8 31.8

Table 5. Evaluation of disentangling of audio and text while train-
ing on the HowTo100M dataset as well weighting components in
the loss function. Aligned text-audio and disentangled text-audio
were trained without loss weighting, disentangled text-audio + loss
weighting – with λt v = 1, λv a = λt a = λt va = λv ta =
λa tv = 0.1 as proposed.

always correct [10], so we consider the step action local-
ization recall as a primary metric for this dataset, where
our method improves performance by 4% with respect to
MCN [2] baseline.

A.3. CrossTask Specific Results

To further analyze step action localization performance,
we considered recalls for every specific task of the CrossTask
dataset in Table 3. We note that our method shows a sig-
nificant boost in almost all cooking-related categories, like
“Make Banana Ice Cream” or “Grill Steak” while does not
improve performance in not-cooking categories “Change
Tire,” “All Oil to Car,” and “Build a Shelves.” The MCN
method, which also utilizes audio channel, similarly demon-
strate a lower performance in “Change Tire” and “All Oil to

Car” tasks compared to video-text-only the CrossTask [10]
and HT100M [6] baselines. We can assume that this happens
due to the fewer car-related video clips in the HowTo100M
dataset (7.8M) compared to food-related clips (54.4 M).

A.4. Fusion Transformer Ablation

We also additionally ablate our Fusion Transformer with
respect to the number of transformer blocks and the number
of heads of multi-headed attention (and the hidden size of the
transformer layer) in Table 4. Due to resource constraints,
for an increase in the number of transformer blocks, we
should linearly decrease either the number of heads or the
training batch size (the large batch size is essential due to
contrastive training). We observe that the best performing
configuration consists of 1 transformer block and a maxi-
mum number of transformer heads (64 heads) that fits into
resources, however, we assume the model can further boost
performance by increasing the number of transformer blocks
leveraging more resources.

A.5. Text-Audio Disentangling and Loss Weighting

We also show the importance of disentangling audio with
respect to text while training on the HowTo100M dataset,
as well as the importance of using a larger text-video loss
weight in the loss function in Table 5. Since text is obtained
by applying an ASR system to the audio track, to avoid text
being learned just as an audio narration, we shift the audio
clip randomly by half of clip length (4 seconds out of 8
seconds) with respect to the video and text boundaries in

“disentangled text-audio.” To further regularize text-audio
learning, in “+ loss weighting” we used a larger weight for a
text-visual loss λt v = 1 compared to other loss components
λv a = λt a = λt va = λv ta = λa tv = 0.1 (similarly
to [1]). Table 5 shows that both adaptations are beneficial
for training on the HowTo100M dataset.

A.6. Relative Positional Encodings

As demonstrated in the paper, we found that absolute po-
sitional embeddings are not beneficial for our model. Apart



Text Query Top 5 Retrieved Videos

until golden brown
fry the falafel balls

heat the oil and

around the sandwich
fold the foil

and coat in bread crumbs
flour dunk in eggs
cover meat with

and water
mix the yeast sugar

(a) Examples of clips retrieved in the top-1 results (@R = 1)

Text Query Top 5 Retrieved Videos

in boiling water
cook the macaroni

in the oven
and cook the chicken
with cooking spray
spray the chicken

sliced onions
and cucumber and

combine diced tomato

parsley
chop some fresh

(b) Examples of clips retrieved in the top-5 results (@R <= 5)

Text Query Top 5 Retrieved Videos

of water to boil
bring a large pan

flip the bread over
when air bubbles form

to the pot
add worcestershire sauce

the jar
water and cover

ingredients add boiling
take out the wrapped

(c) Examples of clips not retrieved in the top-5 results (@R > 5).

Figure 1. Qualitative evaluation. Examples of zero-shot text-to-video retrieval on the YouCook2. Each row shows the top-5 retrieved videos
for a given text query. The correct video is highlighted with a red color.
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Figure 2. The schematic visualization of audio backbone network (the illustration is inspired by [8]).
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(d) Fusion Transformer + Combinatorial Loss

Figure 3. Comparison of different architectures considered in ablation studies. Note that in illustration of the fusion transformer in (c) and
(d), not all blocks are always active, using green rectangles we consider the video embedding computation in (c) and video-audio embedding
computation in (d).

YouCook2 MSR-VTT
Configuration R@5↑ R@10↑ R@5↑ R@10↑
RoPE [9] 40.4 51.2 23.1 31.6
no positional emb. 40.7 51.3 23.8 31.8

Table 6. Evaluation of Rotary Position Embedding (RoPE).

from them, we also tested relative positional encodings,
namely the Rotary Position Embedding (RoPE) [9], that
are shown to better generalize to longer inputs at test time.
We incorporated RoPE into our attention block, where we
independently apply RoPE to each sequence of text, video,
or audio tokens. However, as presented in Table 6 we also
found that RoPE does not benefit our model. But a more
complex strategy that e.g., adds information about alignment
tokens from different modalities (similarly to the RoPE 2D
case) may lead to performance improvement.

B. Qualitative Analysis
We also qualitatively analyze the zero-shot retrieval ca-

pacity of our model on the YouCook2 dataset in Figure 1.

We observe, that for all shown examples retrieved clips are
semantically related to the given text query. Even when a
correct video does not occur in the top-5 retrieval results,
top-5 videos correspond to the text input: for example, for a
query “bring a large pan of water to boil” our model predicts
videos with boiling water in a pot.

C. Implementation Details

C.1. Audio Backbone

Following [2, 8], as an audio backbone, we use a train-
able CNN with residual layers adopted from [3] that takes
log-mel spectrograms with 16 kHz sampling rate, 25 ms
Hamming window, 10 ms window stride, and 40 Mel filter
bands. Note that this backbone is not pretrained. Since archi-
tecture used in [2, 8] extracts 6 1024-dimensional features
per second, we adapt the last two residual blocks to extract
∼1.5 4096-dimensional features per second (the same as
our video backbone). We illustrate architecture in Figure 2.
While training on 8-seconds clips, we used 7.7 seconds of
audio, that results exactly in 12 audio tokens.



C.2. Ablation Architectures

In Figure 3 we illustrate 4 architectures considered in our
ablation studies: a) no transformers: our architecture with-
out transformer layer, trained with three pairwise contrastive
losses; 2) single modality transformer: leveraging three sep-
arate modality-specific transformers; 3) fusion transformer:
the proposed modality agnostic transformer, but trained with
three pairwise contrastive losses without fused modality
components; 4) fusion transformer + combinatorial loss:
the proposed architecture that utilises the modality agnostic
transformer with combinatorial input, trained with combina-
torial loss.

C.3. Fine-tuning Details

During fine-tuning on the YouCook2 and MST-VTT
datasets, we set λt v = λv a = λt a = λt va = λv ta =
λa tv = 1, and train the model for 5 epochs with a learn-
ing rate of 1e−5 and a batch size of 256 on the YouCook2
dataset, and for 25 epochs with the learning rate of 5e−5 and
the batch size of 128 on the MSR-VTT dataset.

C.4. Training Time

Training our model on the HowTo100M dataset takes
approximately 2 days on four Nvidia V100 32GB GPUs.
Fine-tuning on the YouCook2 and the MSR-VTT takes less
than 30 minutes.

References
[1] Jean-Baptiste Alayrac, Adria Recasens, Rosalia Schneider,
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