
Appendix

A. Additional Dataset Details

Hashtag Filtering and Canonicalization. We consid-
ered the set of all hashtags H posted by US users more
than once in public posts as our candidate set. We de-
sign a many-to-one function to map a hashtag to WordNet
synsets [22], s : H → 2S , where S is the set of Word-
Net synsets, and 2S is the power set of S. s is defined as
the get synsets() Python function in Listing 1. We fil-
ter out hashtags which map to ∅, and consider all hashtags
which map to the same set of synsets as the same label. For
instance, #eggplant and #aubergine map to the same
target, whereas #newyork is filtered out. We finally con-
vert the output of f(h), a set of synsets, to a text string,
which we refer to as a canonical hashtag. We refer to the
set of all canonical hashtags, which is our output vocabu-
lary, by C.

1 from nltk.corpus import wordnet
2

3 MIN_LEN = 3
4 ALLOWED_SENSES = {
5 "noun.animal",
6 "noun.artifact",
7 "noun.food",
8 "noun.object",
9 "noun.plant",

10 "noun.event",
11 }
12

13

14 def get_synsets(hashtag):
15 if len(hashtag) < MIN_LEN:
16 return set()
17

18 candidates = {wordnet.morphy(hashtag, wordnet.NOUN)}
19 for i in range(MIN_LEN, len(hashtag) - MIN_LEN + 1):
20 candidate = hashtag[:i] + "_" + hashtag[i:]
21 candidates.add(wordnet.morphy(candidate))
22

23 synsets = set()
24 for word in candidates:
25 if word is None:
26 continue
27 for synset in wordnet.synsets(word):
28 if synset._lexname in ALLOWED_SENSES:
29 synsets.add(synset)
30 return synsets

Listing 1. Hashtag-to-synset mapping code in Python.

Image Sampling. We follow [49] and down-weight the rel-
ative weight of frequent hashtags. For deciding our sam-
pling weights for images, we assign importance factors to
each image based on the (canonical) hashtags associated
with it. For a hashtag h ∈ C, its importance factor, Ih, is
defined as f(h)−1/2, where f(h) is the hashtag’s frequency.
For an image i, with associated hashtags {hj

i}, we define the
image’s importance factor as Ii = max Ihj

i
. Next, we par-

tition the hashtags into two sets – the head, which contains
hashtags which occur in at least 5000 images, and the tail
which contains the remaining infrequent hashtags (see Fig-
ure 1). An image is considered a tail image iff it contains at

Approach Hashtag Head-tail IN-1k
vocabulary sampling Accuracy

size ratio (α)

Baseline [49] 17K - 74.9

+ Head-tail sampling
17K 0.7 76.6
17K 0.5 76.3
17K 0.3 75.5

+ Larger hashtag vocab. 27K 0.7 77.0

Table 4. Dataset ablations. Ablation study on training set col-
lection using ResNeXt-101 32x8d models trained on IG datasets
with 100M unique images; we report the linear classifier accu-
racy on ImageNet-1k. The baseline approach follows the dataset
collection approaches in [49] and reproduces the results in that pa-
per. Partitioning the hashtags and over-sampling the tail (α=0.7)
improves transfer accuracy significantly, but excessively over-
sampling the tail (α = 0.3) worsens it. Increasing the hashtag
vocabulary size improves transfer accuracy.

least one tail hashtag.
We sample images from the set of all images available to

us, I, using the probability distribution pi = cIi ∀i ∈ I,
where c is a normalization constant. We continue sampling
images independently until we reach our target dataset’s to-
tal samples. For a target number of samples, M , we sample
αM samples from the head and (1−α)M samples from the
tail using this sampling procedure (we chose α = 0.7). We
note that because the tail is heavily upsampled, the number
of unique images in a single epoch is smaller than the total
samples M .

The deviations from [49] in dataset collection were ab-
lated by pre-training on datasets of 100 million samples
and evaluating linear classifier performance on ImageNet-
1k, see Table 4 for details. Per the results in the table,
our changes boost transfer performance on ImageNet-1K by
2.1% when pretraining a ResNeXt-101 32x8d on a 100M
dataset. This number might change as we increase the size
of the dataset or model.

Deduplication. [49] performed an extensive deduplica-
tion experiment, which suggests that the percentage of im-
ages in common evaluation datasets that appears on Insta-
gram is very small (< 0.5%) and, in fact, smaller than the
overlap between those evaluation datasets and the ImageNet
training set that is commonly used for model pre-training.
While our sampling methodologies may differ, based on
those observations, we chose not to repeat the deduplica-
tion experiments.

B. Model Complexity and Speed

Table 5 presents the resolution, FLOPs, number of pa-
rameters, number of activations, and train and test through-
puts of all models used in our study.



Model Resolution Flops Params Acts Train Test
(B) (M) (M) (images/sec.) (images/sec.)

EfficientNet L2 475 172.6 480.3 609.9 49 293
EfficientNet L2 800 479.9 480.3 1707.4 19 108
EfficientNet B8 672 63.7 87.4 442.9 103 480
EfficientNet B7 600 38.4 66.3 289.9 157 652
EfficientNet B6 528 19.5 43.0 167.4 246 849

ViT G/14 224 484.2 1844.4 275.4 - † 379
ViT G/14 518 2826.1 1846.3 2639.0 - † 56
ViT H/14 224 167.5 632.0 139.4 246 960
ViT H/14 392 545.9 632.7 638.0 56 242
ViT H/14 518 1018.8 633.5 1523.9 19 116
ViT L/16 224 61.7 304.3 63.5 701 2092
ViT L/16 384 191.5 304.7 270.2 177 567
ViT L/16 512 362.9 305.2 656.4 70 255
ViT B/16 224 17.6 86.6 23.9 2247 3861
ViT B/16 384 55.6 86.9 101.6 549 1161
ViT L/32 224 15.4 306.5 13.3 3176 4431
ViT L/32 384 54.4 306.6 43.9 921 1439

RegNetY 128GF 224 127.7 644.8 71.6 191 879
RegNetY 128GF 384 375.2 644.8 210.2 69 307
RegNetY 32GF 224 32.6 145.0 30.3 607 2824
RegNetY 32GF 384 95.1 145.0 88.9 248 976
RegNetY 16GF 224 16.0 83.6 23.0 989 4562
RegNetY 16GF 384 47.0 83.6 67.7 440 1401

Table 5. Model complexity and speed. Complexity and speed
of models with an ImageNet-1k head at relevant resolutions. We
measure train and train and test speed on a single node with 8 V100
32GB GPUs, maximizing the batch size for each model. Although
EfficientNets have very few FLOPs, they produce a large amount
of activations resulting in much slower train / test speeds. Training
speeds measured for convolutional networks using SGD, and for
ViTs using AdamW [47]. †We were unable to train a ViT G/14
using our setup, even with a batch size of 1.

Model Res. FLOPs Param. Act. Throughput Classification accuracy
(B) (M) (M) Train Test IN-1k IN-5k IG-0.7B

→ IN-1k

ResNeXt-101 32x4d 224 8.0 49.0 21.3 2,222 5,214 79.1 50.9 80.0
DenseNet-264 224 5.9 33.4 8.5 1,813 5,116 76.6 47.9 78.4
EfficientNet B3 300 1.9 12.2 23.8 1,802 2,979 78.5 49.3 77.9
RegNetY 8GF 224 8.0 39.2 18.0 1,770 4,562 79.8 51.4 80.8

Table 6. Overview of the convolutional models we evaluated for
our experiments. ResNeXt and DenseNet models were augmented
with squeeze-and-excitation (SE [34]) layers. We evaluate the
classification accuracy of the models in three settings: (1) train-
ing on ImageNet-1k; (2) training on ImageNet-5k; and (3) pre-
training 1 epoch on 1B examples of IG-0.7B followed by linear
classifier evaluation on ImageNet-1k. We find that the RegNetY
model performs best in all settings. The best result on each dataset
is boldfaced; the second-best result is underlined. Higher is better.

C. Model and Hyperparameter Selection
C.1. Effect of Convolutional Model Family

We performed experiments investigating the perfor-
mance of four different model families in weakly-
supervised pre-training: ResNeXt [74], RegNetY [58],
DenseNet [35] and EfficientNet [65]. As recent model
families like EfficientNet and RegNetY use squeeze-and-
excitation (SE) layers [34] for improved accuracies [34,58],
we also use these in our implementations of DenseNet and
ResNeXt.

Since we trained our models at scale, our goal was to
identify the most efficient model family in terms of the ac-
curacy achieved with a fixed training budget. In line with
this goal, instead of finding models with comparable num-
bers of FLOPs or parameters, which have been shown to
correlate poorly with training speed [18, 58], we instead
measured image throughput during training. We also in-
clude the test time throughput as well since it is a useful
inference time constraint to consider.

To keep the experiments tractable, we used medium-
sized models of each model family. Table 6 lists the can-
didate models for each of the families we used for our com-
parison; these models were selected to have similar training
speeds (in terms of images processed per second). We note
that the test throughputs were also similar except for the
EfficientNet model which uses a higher resolution than the
other models.

We tested the models in three settings: (1) training
and testing on ImageNet-1k, (2) training and testing on
ImageNet-5k, and (3) pre-training on IG-1B followed by
a linear classifier trained and tested on ImageNet-1k. The
results of our experiments are presented in Table 6. The re-
sults show that for a similar training budget, the RegNetY
model family outperforms the other model families on all
three datasets, while also having a competitive inference
throughput. For that reason, we focused on RegNetY mod-
els in all subsequent experiments.

C.2. Effect of Dataset Size

During pre-training, usually the focus is on the the total
number of unique images in the dataset, which we will re-
fer to as the dataset size [20, 49, 73, 76]. In our setup, due
to the upsampling of the least frequent hashtags, our final
dataset is defined by an additional parameter – the dataset’s
samples, which we define as the total number of image-
label pairs, counting duplicates. Table 7 shows the effect
of a dataset’s number of unique images vs the total samples
seen during training. For the IG dataset in the smaller test
regimes we explored, the total samples seen determined the
model performance across a variety of dataset sizes for dif-
ferent model families (convolutional networks, transform-
ers) and model capacities, rather than the number of unique
images seen. We hypothesize that this is because in this
regime the model has not yet saturated. It does suggest that
the total number of samples seen during training is impor-
tant to consider when comparing large datasets with a small
number of epochs.

C.3. Effect of Scaling Parameters

Due to the inherent noise in the learning signal, weakly
supervised pre-training requires substantial scale to obtain
optimal results. We performed experiments studying the ef-
fect on the transfer performance of two key scaling param-



Dataset Epochs IN-1k transfer accuracy
Name Samples RegNetY ViT
(size) 8GF 32GF B/16 L/16

IG-0.2B 250M 8 81.5 83.7 80.5 83.2
IG-0.4B 500M 4 81.5 83.8 80.7 83.5
IG-0.7B 1B 2 81.4 83.8 80.3 83.5
IG-1.4B 2B 1 81.3 83.7 80.5 83.4

Table 7. Effect of dataset size. We compute the linear classifier
accuracy of various models on ImageNet-1k to study the effect of
unique images. Every data point corresponds to the same number
of total samples trained (2 billion), but the dataset size varies.
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Figure 3. Scaling model and dataset sizes. ImageNet top-1 lin-
ear classifier accuracy for various model sizes as a function of
the number of pre-training samples (left) and the training budget
(right). As we go larger in model size, the models become more
efficient in utilizing a given number of pre-training samples, and
additional training samples improve performance. Training time
calculated by dividing the total samples with the training speeds
from Table 5.

eters: (1) model scale and (2) training set scale. To vary
the model scale, we train RegNetY models that were inde-
pendently optimized for use, starting from 16 GFLOPs, up
to 128 GFLOPs. We followed [58] and searched for each
of the models instances on ImageNet-1k. To vary the train-
ing set scale, we use IG datasets of varying sizes. We train
all models for one full epoch, and measure linear classifier
performance on ImageNet-1k.

The results of our experiments are presented in Figure 3.
We present the transfer accuracy as a function of both the
total samples seen and the total training time in GPU-days,
for four different models. The results presented in Fig-
ure 3 are largely in line with those of [49, 76]. Specif-
ically, transfer accuracy improves for both larger models
and for longer training regimes. Akin to [49], we find that
the larger models benefit from more training samples than
their smaller counterparts: the slope of the accuracy curve
of RegNetY 128GF is steeper than that of RegNetY 16GF.
Thus, for a large enough training budget it makes sense to
use a larger model rather than a smaller model trained on
more samples.
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Figure 4. Effect of sync batch norm while fine-tuning. Ima-
geNet top-1 accuracy while fine tuning a RegNetY 128GF contin-
ues to increase as we increase the sync batch size. The model was
always trained with a mini batch size of 512, while varying the
batch sizes for sync batch norm. Results reported without EMA.

D. Training Details
All our models were trained with Classy Vision [2]. For

the transfer results for other works in Table 1, we used the
timm library [71] to get pre-trained checkpoints. In this sec-
tion we share details about our fine-tuning setup for Table
1, viz., the learning rate used (Table 8), and the utility of
using synchronized batch normalization for convolutional
networks (Figure 4).

Hashtag-to-class mapping in zero-shot experiments. Be-
cause both the ImageNet and IG-3.6B datasets have tar-
get sets drawn from English nouns, we can construct a
many-to-many mapping from Instagram hashtags to Ima-
geNet classes. We first map each hashtag to all Word-
Net synsets of the hashtag, and then map each ImageNet
class to the most similar hashtag(s) based on the maxi-
mum path similarity score in WordNet [22] between any of
the the hashtag synsets and the ImageNet class synset. As
the hashtags are nouns or compound nouns, they can have
multiple meanings: for example, #crane refers to both
the bird and the building structure. However, the synset
of crane referring to the bird and synset of crane re-
ferring to the structure are two distinct ImageNet classes.
In this situation, we map both synsets to #crane. Like-
wise, a synset can represent a concept specified by mul-
tiple words and therefore by multiple hashtags, for exam-
ple, the synset {porcupine, hedgehog} matches both
#porcupine and #hedgehog. In this case, we map the
synset to all corresponding hashtags.

To utilize the resulting many-to-many mapping between
hashtags and ImageNet classes, we need to aggregate the
model (hashtag) predictions into predictions over the Ima-
geNet classes. For the RegNetY models, we first map the
prediction value for a hashtag to all ImageNet classes that
the hashtag maps to. When Platt scaling is used, we sum
all the resulting values for an ImageNet class to aggregate



Model Pre-training Learning rate
IN-1k IN-5k iNat Places CUB

Supervised pre-training

EfficientNet L2 [73] JFT 300M – 2.0E−1 2.0E−1 9.6E−2 2.0E−1
EfficientNet B7 [73] JFT 300M – 2.0E−1 2.0E−1 2.0E−1 2.0E−1
EfficientNet B6 [73] JFT 300M – 2.0E−1 2.0E−1 2.0E−1 2.0E−1
EfficientNet B8 [72] IN-1k – 9.6E−2 4.0E−1 9.6E−2 2.0E−1
EfficientNet B7 [72] IN-1k – 9.6E−2 4.0E−1 9.6E−2 2.0E−1
EfficientNet B6 [72] IN-1k – 9.6E−2 4.0E−1 9.6E−2 2.0E−1
ViT L/16 [20] IN-21k – – 4.8E−2 2.4E−2 4.8E−2
ViT B/16 [20] IN-21k – – 4.8E−2 2.4E−2 4.8E−2
ViT L/32 [20] IN-21k – – 4.8E−2 2.4E−2 4.8E−2

Weakly supervised pre-training

ViT H/14 IG 3.6B 6.0E−3 2.4E−2 1.2E−2 3.0E−3 6.0E−3
ViT L/16 IG 3.6B 6.0E−3 2.4E−2 1.2E−2 3.0E−3 3.0E−3
ViT B/16 IG 3.6B 6.0E−3 2.4E−2 1.2E−2 3.0E−3 3.0E−3
RegNetY 128GF IG 3.6B 6.0E−3 2.4E−2 1.2E−2 6.0E−3 3.0E−3
RegNetY 32GF IG 3.6B 6.0E−3 1.2E−2 1.2E−2 1.2E−2 6.0E−3
RegNetY 16GF IG 3.6B 6.0E−3 1.2E−2 1.2E−2 1.2E−2 6.0E−3

Table 8. Base learning rate used for the transfer results in Table 1.

them. When Platt scaling is not used, we instead average
the predicted values for a class. For the ViT models, we
achieved better results with a different aggregation method:
we map 1/N of the prediction value for a hashtag to all N
ImageNet classes that the hashtag maps to, and take the
maximum over all the resulting values for each class.

E. ImageNet Robustness Experiments
A potential advantage of weakly supervised pre-training

is that the resulting models have observed more training
images. This may lead the model to be more robust to
variations in the image content. To evaluate the robust-
ness of our models under small variations in visual con-
tent, image distribution, or labeling, we performed addi-
tional transfer-learning experiments using three ImageNet-
like datasets: (1) ReaL ImageNet [7], (2) ImageNet v2 [60],
and (3) ObjectNet [4]. We fine-tune pre-trained models on
the ImageNet-1k dataset and test them directly on the three
evaluation datasets.

Table 9 presents the results of this experiment. While the
highest accuracies are obtained by large vision transform-
ers (ViT) trained on 3 billion labeled images (JFT 3B), our
weakly pre-trained RegNetY and ViT models are very com-
petitive: our largest models are the runner-up on each of the
datasets. In terms of differences in robustness, however, the
results are inconclusive: validation accuracy on ImageNet-
1k appears to be a good predictor for accuracy on the other
tests sets across models and training regimes.

F. Broader Impact
This section presents a more detailed account of the ex-

periments presented in the main paper, which aim to under-
stand: (1) how well our models perform on photos taken in
non-English speaking countries, and (2) the associations our
hashtag-prediction models learn with photos of people with

Model Pre-training Classification accuracy
IN-1k ReaL-IN IN-v2 Obj. Net

Supervised pre-training†

EfficientNet L2 [73] JFT 300M‡ 88.4 90.6 80.2 68.3
EfficientNet B7 [73] JFT 300M‡ 86.9 90.1 78.1 61.2
EfficientNet B6 [73] JFT 300M‡ 86.4 89.8 76.7 60.0
EfficientNet B8 [72] IN-1k 85.5 89.6 76.1 54.5
EfficientNet B7 [72] IN-1k 85.2 89.5 75.7 53.3
EfficientNet B6 [72] IN-1k 84.8 89.4 75.5 51.9
ViT G/14 [76] JFT 3B 90.5 90.8 83.3 70.5
ViT L/16 [76] JFT 3B 88.5 90.4 80.4 –
ViT H/14 [20] JFT 300M 88.6 90.7 – –
ViT L/16 [20] JFT 300M 87.8 90.5 – –
ViT H/14 [20] IN-21k 85.1 88.7 – –
ViT L/16 [20] IN-21k 85.2 88.4 74.8 56.6
ViT B/16 [20] IN-21k 84.2 88.4 73.5 52.6
ViT L/32 [20] IN-21k 81.5 86.6 71.2 47.2

Weakly supervised pre-training

ViT H/14 IG 3.6B 88.6 90.5 81.1 69.5
ViT L/16 IG 3.6B 88.1 90.6 80.3 66.2
ViT B/16 IG 3.6B 85.3 89.1 75.6 55.2
RegNetY 128GF IG 3.6B 88.2 90.7 80.4 68.5
RegNetY 32GF IG 3.6B 86.8 90.2 78.2 62.5
RegNetY 16GF IG 3.6B 86.0 89.9 76.9 59.0

Table 9. Classification accuracy of models pre-trained on the
specified pre-training dataset followed by finetuning on ImageNet-
1k. Accuracy is measured on four ImageNet-like datasets: (1)
ImageNet-1k itself, (2) ReaL ImageNet [7], (3) ImageNet v2 [60],
and (4) ObjectNet [4]. The best result on each dataset is bold-
faced; the second-best result is underlined. Numbers that are
adopted from the original paper are italicized. Higher is better.
†It is unknown how much manual curation was performed in the
annotation of JFT datasets. ‡Pre-training data also includes IN-1k.

varying characteristics. In this section we share and discuss
all the experimental results in more detail. As a reminder,
all results presented below are for the hashtag-prediction
models; no fine-tuning is employed.

F.1. Analyzing Hashtag Prediction Fairness

Following prior work [17], we analyzed how well the
RegNetY 128GF model works on photos taken across the
world. We first repeated the analysis of [17] on the Dollar
Street dataset. To this end, we use the hashtag-prediction
model in a zero-shot fashion: we manually define a map-
ping from hashtags to the 112 classes in the Dollar Street,
and task the model with predicting only hashtags that are
mapped to a class. We measure the accuracy of the model’s
predictions per country, and display the results on a world
map in which colors correspond to accuracies in the left plot
in Figure 5 (red is 40% correct; green is 70%).

Although the absolute numbers are lower because the
image-recognition model operates in zero-shot mode (the
average accuracy over all countries is 48.0%), qualitatively,
the observations we obtain are in line with prior work [17]:
observed recognition accuracies are higher in the US and
Europe than in most other countries.

Because the Dollar Street dataset may itself have issues,
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Figure 5. Recognition accuracy per country of our zero-shot clas-
sifier on the Dollar Street dataset (top) and a proprietary dataset
(bottom). The accuracy on all images is 48.0% on the Dollar
Street dataset and 63.3% on the proprietary dataset.

we repeated the analysis on a proprietary dataset that con-
tains millions of images labeled for visual concepts and
their country of origin. The resulting world map is shown in
the right plot in Figure 5. The results suggest that the range
of accuracy values is relatively tight (approximately 5%) on
this large proprietary dataset.

Following common practice [75], we also measure the
percentage of classes for which the ratio between the class-
recognition accuracy in country 1 and country 2 is smaller
than 0.8. The results of this analysis are shown in the heat
map in Figure 6. If an entry in the heat map is yellow, then
the model recognizes a substantial percentage (up to 35%)
of classes substantially worse in the “row country” than in
the “column country”.

The results in the figure suggest that the hashtag-
prediction model performs better in the US and worse in
Egypt and Nigeria. There is also a notable difference be-
tween the accuracy map in Figure 5 and the heat map in
Figure 6. The accuracy map suggests that the hashtag-
prediction model performs worst in Brazil and Japan,
whereas the heat map suggests the lowest accuracy is ob-
tained in Egypt and Nigeria. This result may be due to vari-
ations between countries in the distribution of per-class ac-
curacy discrepancies and/or due to variations in the concept
distribution per class.
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Figure 6. Percentage of classes for which recognition accuracy is
substantially higher in one country (rows) than in another country
(columns). We use the 80% rule to assess whether one accuracy
is “substantially higher” than the other.

F.2. Analyzing Associations in Hashtag Predictions

We performed experiments in which we analyze the as-
sociations our hashtag-prediction models make for photos
of people with different apparent skin tone, different appar-
ent age, different apparent gender, and different apparent
race. We present the results of each experiment separately
below.

Apparent Skin Tone We first evaluated potentially trou-
bling associations in hashtag predictions by apparent skin
tone. To this end, we used a proprietary dataset that con-
tains 178,448 Instagram photos that were annotated using
the Fitzpatrick skin tone scale [23]. We ran all these pho-
tos through our RegNetY 128GF hashtag-prediction model,
asking it to predict the five highest-scoring hashtags for
each photo. We maintain per-skin tone statistics on how
often a hashtag in the vocabulary is predicted for a photo of
an individual with that skin tone. Next, we inspect differ-
ences in the hashtag prediction rate between different skin
tones. For each skin tone, we identify the hashtags with the
largest absolute difference in hashtag prediction rate com-
pared to the average prediction rate for the other five skin
tones. We also compute the associated relative difference in
hashtag prediction rate. We show the resulting hashtags for
skin tone 1 (lightest skin tone) and skin tone 6 (darkest skin
tone) in the top row of Figure 7.

The results in the figure reveal several associations that
may not be unexpected: for example, #redhead is more
commonly predicted by the model for photos of people
with a light skin tone, whereas #black is more often pre-
dicted for people with a dark skin tone. The analysis also
reveals associations that are more difficult to explain: do
people with lighter skin tones wear more #headbands or
#bandanas? It is also unclear to what extent the associ-
ations we find are learned by the model and to what extent



they reflect characteristics of the evaluation data.

Apparent Age We performed a similar analysis of associa-
tions between predicted hashtags and apparent age groups.
For this evaluation, we used the UTK Faces dataset [78],
which provides apparent age labels. People were grouped
into age buckets with a range of 10 years (0− 10, 10− 20,
20− 30 years, etc.). We performed the same analysis as be-
fore. The second row of Figure 7 shows the most common
hashtag predictions for two different (apparent) age groups.

Some associations that the analysis reveals are not un-
expected: for example, predicting #baby or #kid for age
group 1 − 10 years or predicting #elder for age group
80− 90 years. The results also show that there may be dis-
crepancies in the meaning of words and hashtags: #rip
is in the hashtag dictionary because one may have a rip in
their shirt but it is commonly used on Instagram as abbre-
viation for “rest in peace”, which is more likely to apply to
people of age. Other disparate associations appear unfortu-
nate, such as the association of #spermbank with photos
of people aged 0− 10 years.

Apparent Gender We performed the same analysis on the
UTK Faces dataset [78] by apparent gender. Due to limita-
tions of the evaluation dataset, we restricted our analyses to
males and females but did not consider non-binary genders.
The results are presented in the third row of Figure 7.

The results suggest that the model has learned certain
gender-specific stereotypes, for example, associating men
with #football and #basketball more frequently or
associating women more frequently with #makeup and
#bikini. The associations revealed by the analysis vary
in how problematic they are: for example, men may not
be excited that they are more frequently associated with
#mugshot – and in some cases, such an association could
be harmful. We will return to this example below.

Apparent Race For better or worse (see below), the UTK
Faces dataset [78] also contains annotations of apparent
race. We repeated the same hashtag prediction analysis
for the groups defined in UTK Faces (Indian, Asian, Black,
White, Other) as well. We present the results of this analysis
in the fourth row of Figure 7.

The results analysis suggest a variety of disparate as-
sociations, some of which are more problematic than oth-
ers. Likely the most troubling association suggested by the
analysis is the association of photos of Black people with
#mugshot and #prison. Because of the sensitivity of
this type of association, we investigated it more in-depth.
First, we performed a visual analysis of the photos for
which the hashtag-prediction model predicted #mugshot
or #prison among its top-5 predictions. This inspection
revealed that a small percentage of the photos in the UTK
Faces dataset are, indeed, mug shots. Specifically, some of
the images in the dataset appear to have been sourced from

http://mugshots.com/. This observation raises an
important question: Are the associations our analyses iden-
tify due to associations that the model has learned, due to
biases in the evaluation data, or both? This question is dif-
ficult to answer without collecting additional annotations.

In this particular case, we decided to re-use the skin tone
dataset we used earlier and measure how often #mugshot
is predicted for the images in that dataset. While skin tone
does not map to race very well, we would expect to observe
at least some correlation between #mugshot prediction
and skin tone if the model had learned this association. The
results were quite the opposite: #mugshot was predicted
7 times (0.0078%) for images with Fitzpatrick skin tone 1
(lightest skin tone) but only once for skin tone 6 (darkest
skin tone; 0.0023%). Combined with our visual inspection,
this suggests that the problematic association we observed
in the analysis on UTK Faces is most likely to be due to
problems in the UTK Faces dataset itself than due to prob-
lems in the hashtag-prediction model. Having said that, we
acknowledge that there are many caveats here, and that our
experiments are not fully conclusive.



hi
ja

b

dr
es

s

kh
im

ar

bl
ou

se

ba
by

m
ak

eu
p

ba
tik

re
dh

ea
d

gl
as

se
s

ey
es

sw
ea

te
r

su
ng

la
ss

es

gr
ee

ne
ye

gi
ng

er

he
ad

ba
nd

ba
nd

an
a

ju
m

ps
ui

t

ki
d

m
od

el

ph
ot

o0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5.
07

x

2.
81

x

8.
44

x

7.
11

x

1.
42

x

1.
27

x

4.
64

x

8.
06

x

1.
71

x

2.
21

x

4.
12

x

1.
49

x

6.
42

x

8.
73

x

3.
15

x

3.
69

x

3.
42

x

1.
15

x

1.
14

x

1.
24

x

Skin tone 1

af
ri

ca

id
ol

bl
ac

k

po
rt

ra
it

m
od

el

st
ill

go
ld

br
ai

d

fa
sh

io
n

st
yl

e

tw
is

t

do
pe

dr
ey

ch
ur

ch su
it

ki
ng

ch
ar

ity

be
ar

d

up
su

rg
e

m
um ra

p

9.
36

x

9.
14

x

3.
20

x

2.
54

x

1.
58

x

14
.3

5x

1.
95

x

1.
13

x

1.
31

x

2.
87

x

11
.7

4x

11
.5

4x

9.
00

x

4.
86

x

4.
57

x

6.
71

x

1.
41

x

13
.1

2x

3.
56

x

5.
19

x

Skin tone 6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

D
iff

er
en

ce
in

ha
sh

ta
g

pr
ed

ic
tio

n
ra

te
(i

n
%

)

ki
d

ba
by

ph
ot

o

tw
in

s

hi
ja

b

st
ud

io

sw
ee

t

sp
er

m
ba

nk

co
st

um
e

th
ro

w
ba

ck

ba
tik

m
ar

io
ne

tte

yo
un

g

m
an

se

ca
no

n

ba
by

sh
oe

ca
bl

es
ys

te
m

di
ap

er

ch
ar

ity

pu
pp

et

0

2

4

6

8

10

12

14

16

37
.2

0x

21
2.

36
x

4.
95

x

42
.1

9x

10
4.

91
x

11
0.

40
x

36
.1

9x

45
.6

7x

13
7.

70
x

2.
70

x

20
10

.0
0x

3.
14

x

6.
20

x

26
1.

73
x

6.
58

x

in
fx

3.
05

x

in
fx

3.
32

x

3.
40

x

0-10

ri
p

el
de

r

re
st

ho
m

e

gr
an

ny
kn

ot

ol
dm

an

he
rp

es
zo

st
er

na
nn

y

tr
av

el

m
ar

io
ne

tte

pi
ct

ur
er

ai
l

ca
bl

es
ys

te
m

po
lli

ng
bo

ot
h

po
rt

ra
it

pu
pp

et

as
ia

fa
ce

w
ar

ra
ga

l

ar
de

a

ho
sp

ic
e

ch
in

a

1.
43

x

1.
57

x

1.
92

x

1.
46

x

2.
01

x

4.
15

x

7.
23

x

2.
22

x

3.
00

x

3.
37

x

2.
95

x

2.
80

x

1.
28

x

2.
98

x

4.
04

x

1.
99

x

9.
80

x

2.
35

x

1.
83

x

1.
66

x

80-90

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

D
iff

er
en

ce
in

ha
sh

ta
g

pr
ed

ic
tio

n
ra

te
(i

n
%

)

ri
p

te
le

vi
si

on
ch

an
ne

l

fo
ot

ba
ll

tr
um

p

ca
nc

er

m
ug

sh
ot

bo
m

bb
la

st

en
gi

ne
ro

om m
an

he
ro

dr
ug ra
p

sl
am

m
er

fil
m

ki
ng

ba
sk

et
ba

ll

fu
si

on

to
ka

m
ak

ph
ys

ic
s

cr
ic

ke
t0

1

2

3

4

5

2.
19

x

7.
60

x

13
.1

6x

2.
14

x

1.
98

x

5.
42

x

13
.8

0x

5.
19

x

76
.3

8x

13
.4

6x

6.
11

x

12
.9

6x

5.
55

x

1.
42

x

28
.4

8x

8.
15

x

89
.1

4x

6.
18

x

6.
74

x

7.
85

x

Male

fa
sh

io
n

qu
ee

ns

m
od

el

ha
ir

st
yl

e

br
ai

nc
hi

ld

st
em w
ig

sa
re

e

m
ak

eu
p

re
dc

ar
pe

t

ki
d

ik
on

ba
by

dr
es

s

af
ri

ca

gr
an

ny
kn

ot

sa
nd

al
w

oo
d

go
ld

br
ai

d

bi
ki

ni

4.
49

x

41
.4

0x

2.
98

x

9.
09

x

3.
79

x

2.
83

x

3.
87

x

42
4.

75
x

29
.9

5x

51
.3

2x

2.
15

x

1.
30

x

3.
90

x

1.
27

x

30
.6

8x

1.
55

x

4.
53

x

3.
42

x

14
.9

0x

63
.3

3x

Female

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

D
iff

er
en

ce
in

ha
sh

ta
g

pr
ed

ic
tio

n
ra

te
(i

n
%

)

af
ri

ca ri
p

bl
ac

k

ha
ir

ra
p

qu
ee

ns

ba
sk

et
ba

ll

w
ig

go
ld

br
ai

d

ra
pp

er

m
ug

sh
ot

go
at

w
ea

ve

br
ai

nc
hi

ld

fo
ot

ba
ll

sl
am

m
er

ap
c

pr
is

on

eb
on

y

bu
nd

le

0

1

2

3

4

5

51
.6

5x

1.
70

x

29
.5

3x

3.
56

x

19
.3

5x

1.
77

x

10
.8

3x

5.
89

x

24
.4

9x

11
.8

7x

3.
40

x

11
.4

7x

31
.4

1x

1.
91

x

2.
37

x

3.
90

x

61
.6

8x

4.
84

x

48
.3

2x

40
.8

4x

Black

se
na

te
ca

m
pa

ig
n

m
ed

ic
am

en
t

fil
m

tr
um

p

ri
p

se
ri

es

re
pu

bl
ic

an
riv

er

ca
nc

er

m
ov

ie
th

ea
te

r

he
ad

sh
ot

te
le

vi
si

on

re
dc

ar
pe

t

st
em

po
rt

ra
it

el
de

r

in
no

va
tio

n

m
ar

io
ne

tte

re
st

ho
m

e

pu
pp

et

ca
bl

es
ys

te
m

7.
99

x

2.
26

x

1.
85

x

2.
09

x

1.
14

x

4.
38

x

4.
80

x

1.
58

x

1.
84

x

3.
55

x

3.
19

x

1.
59

x

1.
88

x

1.
92

x

4.
60

x

2.
75

x

4.
55

x

12
.1

6x

6.
73

x

4.
65

x
White

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

D
iff

er
en

ce
in

ha
sh

ta
g

pr
ed

ic
tio

n
ra

te
(i

n
%

)

Figure 7. Differences in hashtag prediction rate for photos from various apparent subgroups. Absolute differences are sorted, and results
for 20 hashtags with the largest difference are shown. Relative hashtag prediction differences are shown on top of the bars. From top to
bottom: Differences for photos of people with (apparent) Fitzpatrick skin tone 1 and photos of people with other apparent skin tones (left);
and between photos with skin tone 6 and other skin tones (right). Differences between photos with (apparent) age group 0-10 and other
age groups; and between age group 80-90 and other age groups. Differences between photos of (apparent) women and photos of men; and
between photos of men and women. Differences between photos of (apparent) Black people and people of other races; and between photos
of White people and other races.
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