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Abstract

In this supplementary file, we present the detailed struc-
tures of the pose encoder and decoders, derive the actor-
critic loss function from the reinforcement learning objec-
tive, and give an analysis of the user study results on differ-
ent types of music. A demo video is available at https:
//www.youtube.com/watch?v=YbXOcuMTzD8.

1. Structure of Pose Encoder and Decoders

The encoder and decoders in Section 3.1 of the main
paper are complied as 1D temporal CNNs. The detailed
structures are shown in Table 1. The encoder is designed to
downsample the 3D joint sequence 8 times into the encoding
features, and therefore the learned quantized features are
aware of contextual poses in the dance sequence.

Separate VQVAEs are trained for the compositional
upper-and-lower half bodies, respectively. The joint number
J of the upper half body is 15 and that of the lower is 9,
while J = 1 in the global-velocity branch.

2. Derivation to Actor-Critic Loss

Here we derive the actor-critic loss LAC from the initial
reinforcement learning objective. The derivation is mainly
based on the instruction of [1].

First, the learning objective can be reframed as

J(θ) = Eτ∼πθ(τ)[R(τ)] =
∫
πθ(τ)R(τ)dτ, (1)

where θ denotes the weights of the policy making network,
τ represents a string of actions and πθ(τ) is the probability
that the policy network predicts to take such actions.

One approach to maximize J is to optimize the network

Table 1: Architectures of pose encoder and decoders.
(Section 3.1). “Conv” and “TransConv” represent 1D tem-
poral the convolution and transpose-convolution operations,
respectively, and their arguments represent the input channel
number, the output channel number, the kernel size, the con-
volution stride, the padding size on both ends of input data,
and the dilation number in turn. RB denotes Residual Block.
J denotes the 3D joint number.

Residual Block
Input: 0; Argument: p, d

1 ReLU, Conv(512, 512, 3, 1, p, d)
2 ReLU, Conv(512, 512, 1, 1, 0, 1)

Output: 0 + 2
Encoder
Input: 0, Argument: J

1 Conv(J × 3, 512, 4, 2, 1, 1)
2 RB(p = 1, d = 1)
3 Conv(512, 512, 4, 2, 1, 1)
4 RB(p = 3, d = 3)
5 Conv(512, 512, 4, 2, 1, 1)
6 RB(p = 9, d = 9)

Output: 6
Decoder
Input: 0, Argument: J

1 RB(p = 9, d = 9)
2 TransConv(512, 512, 4, 2, 1, 1)
3 RB(p = 3, d = 3)
4 TransConv(512, 512, 4, 2, 1, 1)
5 RB(p = 3, d = 3)
6 TransConv(512, 512, 4, 2, 1, 1)
7 Conv(512, J × 3, 3, 1, 1, 1)

Output: 7

weight θ along the gradient∇θJ as θ ← θ + α∇θJ . Since

∇θπθ = πθ
∇θπθ
πθ

= πθ∇θ log πθ, (2)
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Figure 1: The distribution of our method wins on different music types compared to state of the art. Each bar indicates
the percentage that Bailando wins in the comparison to the corresponding method.

we can rewrite∇θJ into

∇θJ =

∫
∇θπθ(τ)R(τ)dτ

=

∫
πθ∇θ(τ) log πθ(τ)R(τ)dτ

= Eτ∼πθ(τ) [∇θ log πθ(τ)R(τ)] .

(3)

Note that τ = {at}T
′−1

t=0 is the trajectories of actions pre-
dicted on states {st}T

′−1
t=0 , the probability of trajectory πθ(τ)

predicted by the policy making network is expanded to be∏T ′−1
t=0 πθ(at, st), where πθ(at, st) is the probability of ac-

tion at under state st. Hence,

∇θ log πθ(τ) =
T ′−1∑
t=0

∇θ log πθ(at, st) (4)

and we have
∇θJ = Eτ∼πθ(τ) [∇θ log πθ(τ)R(τ)]

= Eτ∼πθ(τ)

T ′−1∑
t=0

∇θ log πθ(at, st)

T ′−1∑
t=0

R(at, st)


= Eτ∼πθ(τ)

T ′−1∑
t=0

∇θ log πθ(at, st)

T ′−1∑
t′=0

R(at′ , st′)

 .
(5)

For on-policy reinforcement learning, ∇θJ is esti-
mated on simultaneously sampled sectional trajectories
{(amt , smt )}M−1m=0 , where M denotes the sampling batch size,
such that the equation above is approximated to be

∇θJ ≈
1

M

M−1∑
m=0

T ′−1∑
t=0

∇θ log πθ(amt , smt )

T ′−1∑
t′=0

R(amt′ , s
m
t′ )

 .

(6)
Note that the optimization of the policy making network
for policy (amt , s

m
t ) is not expected to be influenced by the

past trajectories, i.e., the rewards before t. Therefore, Equa-
tion (6) is reframed as

∇θJ ≈
1

M

M−1∑
m=0

T ′−1∑
t=0

∇θ log πθ(amt , smt )

T ′−1∑
t′=t

R(amt′ , s
m
t′ )

 ,

(7)

where
∑T ′−1
t′=t R(at′ , st′) is the expected “reward to go” un-

der policy (at, st), which is formally named as the Q-value
Q(at, st).

To avoid the bias of rewards, e.g., all rewards are posi-
tive, the Q-value item in Equation (7) is normalized by an
expected “reward to go” on state st, i.e., the critic value
vt = Eat [Q(at, st)], such that

∇θJ ≈
1

M

M−1∑
m=0

T ′−1∑
t=0

∇θ log πθ(amt , smt ) (Q(at, st)− vt)

=
1

M

M−1∑
m=0

T ′−1∑
t=0

∇θ log πθ(amt , smt ) (R(at, st) + vt+1 − vt) .

(8)
Looking closely to Equation (8), if the normalized “re-

ward to go” is positive, to increase J , the policy making net-
work will be optimized to enhance the probability of action
amt under state smt . In our proposed framework, the actions
are within finite selections of the choreographic memory.
Hence, the optimization along with Equation (8) is equiva-
lent to the the optimization via an weighted cross-entropy
loss on the in-time self predictions of the policy making
network:

LAC =

1

T ′ − 1

T ′−2∑
t=0

∑
h=u,l

CrossEntropy
(
aht , p̂

h
t+1

) · sg[εt],

(9)
where p̂ht+1 = argmaxi a

h
t,i is the pose code number pre-

dicted by the policy making network. ε ∈ R(T ′−1)×1 de-
notes the so-called TD-error calculated as

ε0:T ′−2 = r0:T ′−2 + sg[v1:T ′−1]− v0:T ′−2, (10)

where rt = R(t).
Note the time length in Equation (9) is T ′ − 1 instead of

T ′ because the length of critical values is T ′ and the TD-
error need to be calculated by subtracting the neighboring
items.



3. Detailed Distribution of User Study Result
we conduct a user study among the dance sequences

generated by each compared method and the ground truth
data in AIST++ test set. The experiment is conducted with
11 participants separately. For each participant, we randomly
play 50 pairs of comparison videos with a length of around
10 seconds, where each pair contains our result and one
competitor’s in the same music, and ask the participant to
indicate “which one is dancing better to the music”.

The detailed distribution of the user study results on vari-
ous music types are shown in Figure 1. Our method appears
to perform balanced in different kinds of dances and achieves
outstanding performance in some types. For example, for
the breaking dance, Bailando wins all votes in comparisons
to state of the art, while even over 40% participants are more
favor of its generated dances than ground truth.
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