
A. Limitations and potential negative impact
A.1. Limitations

Our model has the following limitations:

• Limitations of sparse training. In general, sparse
training makes it impossible for D to capture com-
plex dependencies between frames. But surprisingly,
it provides state-of-the-art results on modern datasets,
which (using the statement from §3.3) implies that they
are not that sophisticated in terms of motion.

• Dataset-induced limitations. Similar to other machine
learning models, our method is bound by the dataset
quality it is trained on. For example, for FaceForensics
2562 dataset [54], our embedding and manipulations
results are inferior to StyleGAN2 ones [1]. This is due
to the limited number of identities (just 700) in Face-
Forensics and their larger diversity in terms of qual-
ity compared to FFHQ [30], which StyleGAN2 was
trained on.

• Periodicity artifacts. G still produces periodic mo-
tions sometimes, despite of our acyclic positional em-
beddings. Future investigation on this phenomena is
needed.

• Poor handling of new content appearing. We noticed
that our generator tries to reuse the content information
encoded in the global latent code as much as possible.
It is noticeable on datasets where new content appears
during a video, like Sky Timelapse or Rainbow Jelly.
We believe it can be resolved using ideas similar to
ALIS [62].

• Sensitivity to hyperparameters. We found our genera-
tor to be sensitive to the minimal initial period length
maxi �i (See Appx B). We increased it for SkyTime-
lapse [79] from 16 to 256: otherwise it contained un-
natural sharp transitions.

We plan to address those limitations in our future works.

A.2. Potential negative impact
The potential negative impact of our method is similar

to those of traditional image-based GANs: creating “deep-
fakes” and using them for malicious purposes.6. Our model
made it much easier to train a model which produces much
more realistic video samples with a small amount of com-
putational resources. But since the availability of high-
quality datasets is very low for video synthesis, the resulted
model will fall short compared to its image-based coun-
terpart, which could use rich, extremely qualitative image
datasets for training, like FFHQ [30].

6https://en.wikipedia.org/wiki/Deepfake

B. Implementation and training details
Note, that all the details can be found in the source code:

https://github.com/universome/stylegan-v.

B.1. Optimization details and hyperparameters
Our model is built on top of the official StyleGAN2-

ADA [29] repository7. In this work, we build a model
to generate continuous videos and a reasonable question
to ask was why not use INR-GAN [61] instead (like DI-
GAN [5]) to have fully continuous signals? The reason
why we chose StyleGAN2 instead of INR-GAN is that
StyleGAN2 is amenable to the mixed-precision training,
which makes it train ⇡2 times faster. For INR-GAN, en-
abling mixed precision severely decreases the quality and
we hypothesize the reason if it is that each pixel in INR-
GAN’s activations tensor carries more information (due to
the spatial independence) since the model cannot spatially
distribute information anymore. And explicitly restricting
the range of possible values adds a strict upper bound on the
amount of information one each pixel is able to carry. We
also found that adding coordinates information does not im-
prove video quality for our generator neither qualitatively,
nor in terms of scores.

Similar to StyleGAN2, we utilize non-saturating loss and
R1 regularization with the loss coefficient of 0.2 in all the
experiments, which is inherited from the original repo and
we didn’t try any hyperparameter search for it. We also
use the fmaps parameter of 0.5 (the original StyleGAN2
used fmaps parameter of 1.0), which controls the channel
dimensionalities in G and D, since it is the default setting
for StyleGAN2-ADA for 2562 resolution. This allowed us
to further speedup training.

The dimensionalities of w, z,ut,vt are all set to 512.
As being stated in the main text, we use a padding-less

conv1d-based motion mapping network Fm with a large
kernel size to generate raw motion codes ut. In all the ex-
periments, we use the kernel size of 11 and stride of 1. We
do not use any dilation in it despite the fact that they could
increase the temporal receptive field: we found that vary-
ing the kernel size didn’t produce much benefit in terms of
video quality. Using padding-less convolutions allows the
model to be stable when unrolled at large depths. We use
2 layers of such convolutions with a hidden size of 512.
Another benefit of using conv1d-based blocks is that in
contrast to LSTM/GRU cells one can practically incorpo-
rate equalized learning rate [28] scheme into it.

Using conv1d-based motion mapping network without
paddings forces us to use “previous” motion noise codes
zm
t . That’s why instead of sampling a sequence zm

t0 , ..., z
m
tn ,

we sample a slightly larger one to adjust for the reduced se-
quence size. For the same-padding strategy, for sampling

7https://github.com/nvlabs/stylegan2-ada

https://en.wikipedia.org/wiki/Deepfake
https://github.com/universome/stylegan-v
https://github.com/nvlabs/stylegan2-ada

a frame at position t 2 [tn�1, tn), we would need to pro-
duce n motion noise codes zm. But with our kernel size of
11, with 2 layers of convolutions and without padding, the
resulted sequence size is n+ 20.

The training performance of VideoGPT on UCF101 is
surprisingly low despite the fact that it was developed for
such kind of datasets [80]. We hypothesize that this happens
due to UCF101 being a very difficult dataset and VideoGPT
being trained with the batch size of 4 (higher batch size
didn’t fit our 200 GB GPU memory setup), which damaged
its ability to learn the distribution.

To train our model, we also utilized adaptive differ-
entiable augmentations of StyleGAN2-ADA [29], but we
found it important to make them video-consistent, i.e. ap-
plying the same augmentation for each frame of a video.
Otherwise, the discriminator starts to underperform, and the
overall quality decreases. We use the default bgc aug-
mentations pipe from StyleGAN2-ADA, which includes
horizontal flips, 90 degrees rotations, scaling, horizon-
tal/vertical translations, hue/saturation/brightness/contrast
changes and luma axis flipping.

While training the model, for real videos we first select
a video index and then we select random clip (i.e., a clip
with a random offset). This differs from the traditional DI-
GAN or VideoGPT training scheme, that’s why we needed
to change the data loaders to make them learn the same
statistics and not get biased by very long videos.

To develop this project, ⇡7.5 NVidia v100 32GB GPU-
years + ⇡0.3 NVidia A6000 GPU-years were spent.

B.2. Projection and editing procedures
In this subsection, we describe the embedding and edit-

ing procedures, which were used to obtain results in Fig 2.
Projection. To project an existing photogrpah into

the latent space of G, we used a procedure from Style-
GAN2 [31], but projecting into W+ space [1] instead of
W , since it produces better reconstruction results and does
not spoil editing properties. We set the initial learning rate
to 0.1 and optimized a w code for LPIPS reconstruction
loss [81] for 1000 steps using Adam. For motion codes, we
initializated a static sequence and kept it fixed during the
optimization process. We noticed that when it is also being
optimized, the reconstruction becomes almost perfect, but it
breaks when another sequence of motion codes is plugged
in.

Editing. Our CLIP editing procedure is very similar to
the one in StyleCLIP [48], with the exception that we embed
an image assuming that it is a video frame in location t = 0.
On each iteration, we resample motion codes since all our
edits are semantic and do not refer to motion. We leave the
motion editing with CLIP for future exploration. For the
sky editing video presented in Fig 2, we additionally utilize
masking: we initialize a mask to cover the trees and try not

to change them during the optimization using LPIPS loss.
For all the videos, presented in the supplementary website,
no masking is used.

The details can be found in the provided source code.

B.3. Additional details on positional embeddings

Mitigating high-frequency artifacts. We noticed that if
our periods !t are left unbounded, they might grow to very
large values (up to magnitude of ⇡20.0), which corresponds
to extra high frequencies (the period length becomes less
than 4 frames) and leads to temporal aliasing. That’s why
we process them via the tanh(!t)+1 transform: this bounds
them into (0, 2) range with the mean of 1.0, i.e. using the
at-initialization frequency scaling, which we discuss next.

Linearly spaced periods. An important design de-
cision is the scaling of periods since at initialization it
should cover both high-frequency and low-frequency de-
tails. Existing works use either exponential scaling � =
(2⇡/2d, 2⇡/2d�1, ...) (e.g., [23,39,45,62]) or random scal-
ing � ⇠ N (0, ⇠I) (e.g., [4, 59, 61, 65]). In practice, we
scale the i-th column of the amplitudes weight matrix with
the value:

�i =
2⇡

!min + (i/N) · (!max � !min)
, (6)

where we use !max = 210 frames and !min = 23 frames in
all the experiments, except for SkyTimelapse, for each we
use !min = 28. We call this scheme linear scaling and use it
as an additional tool to alleviate periodicity since it greatly
increases the overall cycle of a positional embedding (see
Fig 9). See also the accompanying source code for details.

Another benefit of using our positional embeddings over
LSTM is that they are “always stable”, i.e. they are always
in a suitable range.

C. Evaluation details
For the practical implementation, see the provided

source code: https://github.com/universome/stylegan-v.
In this section, we describe the difficulties of a fair com-

parison of the FVD score. There are discrepancies between
papers in computing even FID [47]. So, it is less surprising
that computing FVD for videos diverge even more and has
even more implications for methods evaluation.

First, we note that I3D model [10] has different weights
on tf.hub https://tfhub.dev/deepmind/i3d-kinetics-400/1 —
the model which is used in the official FVD repo.8 — com-
pared to its official release in the official github repo imple-
mentation 9 That’s why we manually exported the weights

8https://github.com/google-research/google-
research/blob/master/frechet video distance

9https://github.com/deepmind/kinetics-i3d

https://github.com/universome/stylegan-v
https://tfhub.dev/deepmind/i3d-kinetics-400/1
https://github.com/google-research/google-research/blob/master/frechet_video_distance
https://github.com/google-research/google-research/blob/master/frechet_video_distance
https://github.com/deepmind/kinetics-i3d

from tf.hub and used this github repo 10 to obtain an exact
implementation in Pytorch.

There are several issues with FVD metric on its own.
First, it does not capture motion collapse, which can be ob-
served by comparing FVD16 and FVD128 scores between
StyleGAN-V and StyleGAN-Vwith LSTM motion codes
instead of our ones: the latter one has a severe motion col-
lapse issue (see the samples on our website) and has similar
or lower FVD128 scores compared to our model: 196.1 or
165.8 (depending on the distance between anchors) vs 197.0
for our model. Another issue with FVD calculation is that it
is biased towards image quality. If one trains a good image
generator, i.e. a model which is not able to generate any
videos at all, then FVD will still be good for it even despite
the fact that it would have degenerate motion.

We also want to make a note on how we compute FID for
vidoe generators. For this, we generate 2048 videos of 16
frames each (starting with t = 0) and use all those frames in
the FID computation. In this way, it gives ⇡33k images to
construct the dataset, but those images will have lower di-
versity compared to a typically utilized 50k-sized set of im-
ages from a traditional image generator [30]. The reason of
it is that 16 images in a single clip likely share a lot of con-
tent. A better strategy would be to generate 50k videos and
pick a random frame from each video, but this is too heavy
computationally for models which produce frames autore-
gressively. And using just the first frame in FID computa-
tion will unfairly favour MoCoGAN-HD, which generates
the very first frame of each video with a freezed StyleGAN2
model.

FVD is greatly influenced by 1) how many clips per
video are selected; 2) with which offsets; and 3) at which
frame-rate. For example, SkyTimelapse contains several ex-

tremely long videos: if we select as many clips as possible
from each real video, that it will severely bias the statis-
tics of FVD. For FaceForensics, videos often contain intro
frames during their first ⇡0.5-1.0 seconds, which will af-
fect FVD when a constant offset of 0 is chosen to extract a
single clip per video.

That’s why we use the following protocol to compute
FVDn.

Computing real statistics. To compute real statistics,
we select a single clip per video, chosen at a random off-
set. We use the actual frame-rate of the dataset, which the
model is being trained on, without skipping any frames. The
problem of such an approach is that for datasets with small
number of long videos (like, FaceForensics, see Table 7)
might have noisy estimates. But our results showed that the
standard deviations are always < 3.0 even for FaceForen-
sics 2562. The largest standard deviation we obserbed was
when computing FVD16 on RainbowJelly: on this dataset
it was 26.15 for VideoGPT, but it is < 1% of its overall

10https://github.com/hassony2/kinetics i3d pytorch

Table 4. Subtleties of FVD calculation. We report different ways
of calculating FVD16 on FaceForensics 2562 (FF) and SktTime-
lapse 2562 (ST) for one of our checkpoints. We show how the
scores of StyleGAN-V are influenced a lot when different strate-
gies of FVD16 calculation are employed. See the text for the de-
scription of each row.

Method FF ST

Proper computation 76.82 ±1.57 61.95 ±0.92
When resized to 1282 38.92 59.86
With jpg/png discrepancy 80.17 71.40
When using all clips per video 84.59 72.03
When using only first frames 91.64 59.74
When using subsampling of s = 8 82.88 90.21

Still real images 342.5 166.8

magnitude.
Computing fake statistics. To compute fake statistics,

we generate 2048 videos and save them as frames in JPEG
format via the Pillow library. We use the quality parameter
q = 95 for doing this, since it was shown to have very close
quality to PNG, but without introducing artifacts that would
lead to discrepancies [47]. Ideally, one would like to store
frames in the PNG format, but in this case it would be too
expensive to represent video datasets: for example, MEAD
10242 would occupy ⇡0.5 terabytes of space in this case.

We illustrate the subtleties of FVD computation in Ta-
ble 4. For this, we compute real/fake statistics for our model
in several different ways:

• Resized to 1282. Both fake and real statistics images
are resized into 1282 resolution via the pytorch bilinear
interpolation (without corners alignment) before com-
puting FVD.

• JPG/PNG discrepancy. Instead of saving fake frames
in JPG with q = 95, we use q = 75 parameter in
the PIL library. This creates more JPEG-like artifacts,
which, for example, FID is very sensitive to.

• Using all clips per video. We use all available n-
frames-long clips in each video without overlaps.
Note, that our model was trained

• Using only first frames. In each real video, instead of
using random offsets to select clips, we use the first n
frames.

• Using s = 8 subsampling. When sampling frames
for computing real/fake statistics, we select each 8-th
frame. This is the strategy which was employed for
some of the experiments in the original paper [69] —
but in their case, authors trained the model on videos
with this subsampling.

https://github.com/hassony2/kinetics_i3d_pytorch

Table 5. Inception Score [55] on UCF101 2562 (note that the un-
derlying C3D model resizes the 2562 videos into 1122 resolution
under the hood, eliminating high-quality details).

Method Inception Score [55]

MoCoGAN [68] 10.09±0.30
MoCoGAN+SG2 (ours) 15.26±0.95
VideoGPT [80] 12.61±0.33
MoCoGAN-HD [66] 23.39±1.48
DIGAN [5] 23.16±1.13
StyleGAN-V (ours) 23.94±0.73

Real videos 97.23±0.38

Table 6. FVD16, FID and training costs of modern video genera-
tors on FaceForensics 2562. Training cost is measured in terms of
GPU-days.

Method FVD16 FID Training cost

MoCoGAN [68] 124.7 23.97 5
MoCoGAN+SG2 (ours) 55.62 10.82 8
VideoGPT [80] 185.9 22.7 32
MoCoGAN-HD [66] 111.8 7.12 16.5
DIGAN [5] 62.5 19.1 16
StyleGAN-V (ours) 47.41 9.445 8

StyleGAN2 [29] N/A 8.42 7.72

For completeness, we also provide the Inception
Score [55] on UCF-101 2562 dataset in Table 5. Note that
is computed by resizing all videos to 112⇥112 spatial reso-
lution (due to the internal structure of the C3D [67] model),
which makes it impossible for it to capture high-resolution
details of the generated videos, which is the focus of the
current work.

In Tab 6, we provide the numbers, used in Fig 3. Note
that StyleGAN2 training in our case is slightly slower than
the officially specified one (7.3 vs 7.7 GPU days)11, which
we attribute to a slightly slower file system on our compu-
tational cluster.

D. Failed experiments
In this section, we provide a list of ideas, which we tried

to make work, but they didn’t work either because the idea
itself is not good, or because we didn’t put enough experi-
mental effort into investigating it.

Hierarchical motion codes. We tried having several
layers of motion codes. Each layer has its own distance be-
tween the codes. In this way, high-level codes should cap-
ture high-level motion and bottom-level codes should rep-
resent short local motion patterns. This didn’t improve the

11https://github.com/NVlabs/stylegan2-ada-pytorch

scores and didn’t provide any disentanglement of motion
information. We believe that the motion should be repre-
sented differently (similar to FOMM [58]), rather than with
motion codes, because they make it difficult for G to make
them temporily coherent.

Maximizing entropy of motion codes to alleviate mo-
tion collapse. As an additional tool to alleviate motion col-
lapse, we tried to maximize entropy of wave parameters of
our motion codes. The generator solved the task of maxi-
mizing the entropy well, but it didn’t affect the motion col-
lapse: it managed to save some coordination dimensions of
vt specifically to synchronize motions.

Prorgressive growing of frequences in positional em-
beddings. We tried starting with low-frequencies first and
progressively open new and new ones during the training.
It is a popular strategy for training implicit neural repre-
sentations on reconstruction tasks (e.g., [23,45]), but in our
case we found the following problem with it. The gener-
ator learned to use low frequencies for representing high-
frequency motion and didn’t learn to utilize high frequen-
cies for this task when they became available. That’s why
high-frequency motion patterns (like blinking or speaking)
were unnaturally slow.

Continuous LSTM with EMA states. Our motion
codes use sine/cosine activations, which makes them suf-
fer from periodic artifacts (those artifacts are mitigated by
our parametrization, but still present sometimes). We tried
to use LSTM, but with exponential moving average on top
of its hidden states to smoothen out motion representations
temporally. However, (likely due to the lack of experimen-
tal effort which we invested into this direction), the resulted
motion representations were either too smooth or too sharp
(depending on the EMA window size), which resulted in
unnatural motions.

Concatenating spatial coordinates. INR-GAN [61]
uses spatial positional embeddings and shows that they pro-
vide better geometric prior to the model. We tried to use
them as well in our experiments, but they didn’t provide any
improvement neither in qualitatively, nor quantitatively, but
made the training slightly slower (by ⇡%10) due to the in-
creased channel dimensionalities.

Feature differences in D. Another experiment direc-
tion which we tried is computing differences between ac-
tivations of next/previous frames in a video and concate-
nating this information back to the activations tensor. The
intuition was to provide D information with some sort of
“latent” optical flow information. However, it made D too
powerful (its loss became smaller than usual) and it started
to outpace G too much, which decreased the final scores.

Predicting �x instead of conditioning in D. There are
two ways to utilize the time information in D: as a condi-
tioning signal or as a learning signal. For the latter one, we
tried to predict the time distances between frames by train-

https://github.com/NVlabs/stylegan2-ada-pytorch

Table 7. Additional datasets information in terms of total lengths
(in the total number of hours), average video length (in seconds),
frame rate and the amount of speakers (for FaceForensics and
MEAD).

Dataset #hours avg len FPS #speakers

FaceForensics [54] 4.04 20.7s 25 704
SkyTimelapse [79] 12.99 22.1s 25 N/A
UCF-101 [63] 0.51 6.8s 25 N/A
RainbowJelly 7.99 17.1s 30 N/A
MEAD [73] 36.11 4.3s 30 48

ing an additional head to predict the class (we treated the
problem as classification instead of regression since there
is a very limited amount of time distances between frames
which D sees during its training). However, it noticeably
decreased the scores.

Conditioning on video length. For unconditional UCF-
101, it might be very important for G to know the video
length in advance. Because some classes might contain very
short clips (like, jumping), while others are very long, and
it might be useful for G to know in advance which video
it will need to generate (since we sample frames at random
time locations during training). However, utilizing this con-
ditioning didn’t influence the scores.

E. Datasets details
E.1. Datasets details

We provide the dataset statistics in Fig 10 and their com-
parison in Table 7. Note, that for MEAD, we use only its
front camera shots (originally, it releases shots from several
camera positions).

E.2. Rainbow Jelly
We noticed that modern video synthesis datasets are ei-

ther too simple or too difficult in terms of content and mo-
tion, and there are no datasets “in-between”. That’s why we
introduce RainbowJelly: a dataset of “floating” jellyfish. It
is constructed from an 8-hour-long movie in 4K resolution
and 30 FPS from the Hoccori Japan youtube video channel.
It contains simple content but complex hierarchical motions
and this makes it a challenging but approachable test-bed
for evaluating modern video generators.

For our RainbowJelly benchmark, we used the following
film: https://www.youtube.com/watch?v=P8Bit37hlsQ. We
cannot release this dataset due to the copyright restrictions,
but we released a full script which processes it (see the pro-
vided source code). To construct a benchmark, we sliced it
into 1686 chunks of 512 frames each, starting with the 150-
th frame (to remove the loading screen), center-cropped and
resized into 2562 resolution. This benchmark is advanta-
geous compared to the existing ones in the following way:

1. It contains complex hierarchical motions:

• a jellyfish flowing in a particular direction (low-
frequency global motion);

• a jellyfish pushing water with its arms (medium-
frequency motion)

• small perturbations of jellyfish’s body and tenta-
cles (high-frequency local motion).

2. It is a very high-quality dataset (4K resolution).

3. It is simple in terms of content, which makes the
benchmark more focused on motions.

4. It contains long videos.

F. Implicit assumptions of sparse training
In this section, we elaborate on our simple theoretical

exposition from §3.3
Consider that we want to fit a probabilistic model q✓(x)

to the real data distribution x ⇠ p(x) = p(x1, ..., xn). For
simplicity, we will be considering a discrete finite case, i.e.
n < 1, but note that videos, while continuous and infinite
in theory, are still discretized and have a time limit to fit
on a computer in practice. For fitting the distribution, we
use k-sparse training, i.e. picking only k random coordi-
nates from each sample x ⇠ p(x) during the optimization
process. In other words, introducing k-sparse sampling re-
formulates the problem from

d(p(x), q✓(x)) �! min
✓

(7)

into X

I2Ik

d(p(xI), q✓(xI)) �! min
✓

, (8)

where d(·, ·) is a problem-specific distance function be-
tween probability distributions, Ik is a collection of all
possible sets I = {i1, ..., ik} of unique indices ij 2
{1, 2, ..., n} and xI denotes a sub-vector (xi1 , ..., xik) of
x. This means, that instead of bridging together full dis-
tributions we choose to bridge all their possible marginals
of length k instead. When solving Eq. (8) will help us to
obtain the full joint distribution p(x)? To investigate this
question, we develop the following simple statement.

Let’s denote by J k
<i a collection of sets Ji of up to k

indices s.t. 8Ji 2 J k
<i we have j < i for all j 2 Ji.

Using the chain rule, we can represent p(x) as:

p(x) =
nY

i=1

p(xi|x<i), (9)

where x<i denotes the sequence (x1, ..., xi�1). Now, if we
know that for each i, there exists Ji = {j1, ..., jk�1} with
j` < i s.t.:

p(xi|x<i) = p(xi|xJi), (10)

https://www.youtube.com/watch?v=P8Bit37hlsQ

then p(x) is obviously simplified to:

p(x) =
nY

i=1

p(xi|x<i) =
nY

i=1

p(xi|xJi) (11)

Does this tell anything useful? Surprisingly, yes. It
says that if p(x) is simple enough that instead of using
the whole history x<i to model p(xi|x<i) it’s enough to
use only some set “representative moments” Ji (unique for
each i) with the size |Ji| < k, then k-sparse training is a
viable alternative. After fitting q✓(x) via k-sparse training,
we will be able to obtain p(x) using Eq (10) even though

q✓(x) 6⌘ p(x)! Note, that one can obtain a conditional
distributional p(xi|xI) from the marginal one p(xi,xI) for
some set of indicies I = {i1, ..., i`�1} via:

p(xi|xI) =
p(xi,xI)

p(xI)
=

p(xi,xI)R
xi
p(xi,xI)dxi

. (12)

But we would also like to have the “reverse” dependency,
i.e. knowing that if we can approximate the distribution via
a set of marginals, then this distribution is not too difficult.
For this claim, we will need to consider marginals not of
an arbitrary form p(xS), but of the form p(xi, Ji), and we
would need exactly n of those. The reverse implication is
the following. If p(x) can be represented as a product of n
conditionals p(i|Ji), then for each i there exists Ji 2 J k

<i

s.t. p(xi|xi) = p(xi|Ji). This statement, just like the pre-
vious one, looks obvious. But oddly, requires more than a
single sentence to prove. First, we are given that:

p(x) =
nY

i=1

p(xi|x<i) =
nY

i=1

p(xi|xJi), (13)

but unfortunately, we cannot directly claim that each term
in the product

Qn
i=1 p(xi|x<i) equals to its corresponding

one in the product
Qn

i=1 p(xi|xJi). For this, we first need
to show that for each m we have:

p(xm) =
mY

i=1

p(xi|xJi) (14)

It can be seen from the fact, that:

p(xm) =

Z

x>m

p(x)dx>m

=

Z

x>m

nY

i=1

p(xi|xJi)dx>m

=
mY

i=1

p(xi|xJi) ·
Z

x>m

nY

i=m+1

p(xi|xJi)dx>m

=
mY

i=1

p(xi|xJi) · 1

=
mY

i=1

p(xi|xJi)

(15)

This allows to cancel terms in the chain rule one by one,
starting from the end, leading to the desired equality:

p(xi|x<i) = p(xi|xJi) (16)

Does this reverse claim tells us anything useful? Surpris-
ingly again, yes. It implies that if we managed to fit p(x)
by using k-sparse training, then this distribution is not so-
phisticated.

Merging the above two statements together, we see that
p(x) can be represented as a product of n conditionals

p(xi|xJi) for i = 1, ..., n if and only if for all i 6 n there

exists Ji 2 J k�1
<i s.t. p(xi|x<i) ⌘ p(xi|xJi).

What does this statement tell for video synthesis? Any
video synthesis algorithm utilizes k-sparse training to learn
its underlying model, but in contrast to prior work, we use
very small values of k. This means, that we fit our model
q✓(x) to model any k-marginals of p(x) (considering that
we pick frames uniformly at random) instead of the full one
p(x). And using the above statement, such a setup implies
the assumption of Eq (10). This equation says that one can
know everything about xi by just observing previous frames
Ji. In other words, xi must be predictable from xJi . More-
over, it is easy to show that our statement can generalize to
include several J (1)

i , ..., J (`)
i for i-th frame, i.e. there might

exist several explainable sets of frames.

G. Additional samples
For the ease of visualization, we provide ad-

ditional samples of the model via a web page:
https://universome.github.io/stylegan-v.

H. Comparison to DIGAN
Our model shares a lot of similarities to DIGAN [5] and

in this section we highlight those similarities and differ-
ences.

https://universome.github.io/stylegan-v

H.1. Major similarities

Sparse training. DIGAN also utilizes very sparse train-
ing (only 2 frames per video). But in our case, we addition-
ally explore the optimal number of frames per video k (see
§3.3).

Continuous-time generator. DIGAN also builds a gen-
erator, which is continuous in time. But our generator does
not lose the quality at infinitely large lengths.

Dropping conv3d blocks. DIGAN also drops
conv3d blocks in their discriminator. But in contrast to
us, they still have 2 discriminators.

H.2. Major differences

Motion representation. DIGAN uses only a single
global motion code, which makes it theoretically impossi-
ble to generate infinite videos: at some point it will start
repeating itself (due to the usage of sine/cosine-based posi-
tional embeddings). In our case, we use an infinite sequence
of motion codes, which are being temporally interpolated,
computed wave parameters from and transformed into mo-
tion codes. DIGAN mixes temporal and spatial information
together into the same positional embedding, which creates
the following problem: even when time changes, the spatial
location, perceived by the model, also changes. This cre-
ates a “head-flying-away” effect (see the samples). In our
case, we keep these two information sources decomposed
from one another.

Generator’s backbone. DIGAN is built on top of INR-
GAN [61], while our work uses StyleGAN2. This allows
DIGAN to inherit INR-GAN’s benefits from being spatially
continuous, but at the expense of being less stable and be-
ing slower to train (due to the lack of mixed precision and
increased channel dimensionalities from concatenating po-
sitional embeddings).

Discriminator structure. DIGAN uses two discrimina-
tors: the first one operates on image-level and is equiva-
lent to StyleGAN2’s one, while the other one operates on
“video” level and takes frames xt1 ,xt2 and the time differ-
ences between them � = t2 � t1, concatenates them all
together into a 7-channel input image (tiling the time dif-
ference scalar) and passes into a model with StyleGAN2
discriminator’s backbone. In our case, we use concatenate
the frames features and apply the conditioning via the pro-
jection discriminator [40] strategy.

Sampling procedure. We use k = 3 samples per video,
while DIGAN uses k = 2. Also, we sample frames uni-
formly randomly, while DIGAN selects t1 ⇠ Beta(2, 1)
and t1 ⇠ Beta(1, 2) (in this way, DIGAN sometimes have
t1 > t2). Apart from that, they use T = 16.

Apart from those major distinctions, there are lot of
small implementation differences. We refer an interested
reader to the released codebases for them:

• StyleGAN-V: https://github.com/universome/stylegan-
v

• DIGAN: https://openreview.net/forum?id=Czsdv-S4-
w9

H.3. A note on the computational cost
INR-GAN demonstrated that it has higher throughput

than StyleGAN2 in terms of images/second [61]. But the
authors compare to the original StyleGAN2 implementation
and not to the one from StyleGAN2-ADA repo, which is
much better optimized. Also, they use caching of positional
embeddings which is only possible at test-time and has great
influence on its computational performance. In this way, we
found that that StyleGAN2 is ⇡2 times faster to train and is
less consuming in terms of GPU memory than INR-GAN.

DIGAN is based on top of INR-GAN and that’s why
suffers from the issues described above. We trained it for
a week on ⇥4 v100 NVidia GPUs and observed that it
stopped improving after ⇡5 days of training. This is equiv-
alent to ⇡20k real frames seen by the discriminator (while
MoCoGAN+SG2 and StyleGAN-V reach ⇡25k in just 2
days for the same resolution in the same environment). For
the time of the submitting the main paper, there was no in-
formation about the training cost. However, the authors up-
dated their manuscript for the time of submitting the supple-
mentary and specify the training cost of 8 GPU-days 1282

resolution, which is consistent with our experiments (con-
sidering that we have twice as larger resolution).

https://github.com/universome/stylegan-v
https://github.com/universome/stylegan-v
https://openreview.net/forum?id=Czsdv-S4-w9
https://openreview.net/forum?id=Czsdv-S4-w9

(a) Exponentially spaced periods [39]: d = 5, cycle length is 64.

(b) Random periods [59, 65]: d = 3, cycle length is 120 (for the depicted � ⇠
N (0, I)).

(c) Linearly spaced periods (ours): d = 3, cycle length is 352.

(d) Raw acyclic positional embeddings ṽt: d = 3, no cyclicity. While such embed-
dings are acyclic, they have discontinuities at stitching points.

(e) Stitched raw acyclic positional embeddings without alignment vectors: d = 3, no
cyclicity. Stitching raw positional embeddings without using “aligners” a = Wau
removes discontinuities, but reduces the expressive power of positional embeddings
since they have zero values at time locations {t0, t1, ..., tn, ...}.

(f) Acyclic periods with linearly-spaced scaling (ours): d = 3, no cyclicity. Notice
that the frequencies and phases are controlled by the motion mapping network Fm:
for example, it has the possibility to accelerate some motion (like the one represented
by the red curve) by increasing its frequency.

Figure 9. Visualizing positional embeddings sin(�t) for different
initialization strategies of periods scales �. The cycle length is the
minimum value of t for which the positional embedding vector
starts repeating itself (it is computed as a least common multiple
of all the individual periods lengths). Existing works use either
exponentially spaced or random scaling, but in our case we use
the linearly spaced one since it has a very large global cycle (in
contrast to exponential scaling) and is guaranteed to include high-
frequency, medium-frequency and high-freqency waves (in con-
trast to random scaling).

(a) FaceForensics [54].

(b) SkyTimelapse [79].

(c) UCF-101 [63].

(d) RainbowJelly [63].

(e) MEAD [63].

Figure 10. Distribution of video lengths (in terms of numbers
of frames) for different datasets. Note that RainbowJelly and
MEAD [73] are 30 FPS, while the rest are 25 FPS datasets. Note
that SkyTimelapse contains several very long videos which might
bias the distribution if not treated properly.

	. Introduction
	. Related work
	. Model
	. Generator structure
	. Discriminator structure
	. Implicit assumptions of sparse training

	. Experiments
	. Main experiments
	. Ablations
	. Properties

	. Conclusion
	. Limitations and potential negative impact
	. Limitations
	. Potential negative impact

	. Implementation and training details
	. Optimization details and hyperparameters
	. Projection and editing procedures
	. Additional details on positional embeddings

	. Evaluation details
	. Failed experiments
	. Datasets details
	. Datasets details
	. Rainbow Jelly

	. Implicit assumptions of sparse training
	. Additional samples
	. Comparison to DIGAN
	. Major similarities
	. Major differences
	. A note on the computational cost

