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A. MAD Detailed Statistics
This section provides additional statistics for the MAD

dataset. First, we compare the automatically curated train-
ing set against the manually curated validation and test sets,
highlighting similarities and differences. Second, we assess
the presence of repetitive sentences which might be ambigu-
ous for the language grounding in videos task. We follow
by providing additional statistics about MAD’s vocabulary
and conclude the sections highlighting MAD’s large visual
and language diversity.

A.1. Data splits comparison

As described in Section 3 of the main paper, the train-
ing set is automatically collected and annotated, whereas
the val/test sets of MAD were adapted from the LSMDC
dataset [6]. Considering this difference, we analyze the
key statistics and discrepancies between the training and the
val/test sets in detail. We summarize these results in Table 1
and Figure 1.

As shown in Table 1, the training set contains about
3/4 of the total video hours and query sentences in MAD,
val/test sets contain 1/4. The average video duration in the
two splits is similar, with training videos being, on average,
only 6.2% shorter than those in val/test. Moreover, the aver-
age temporal span of the moments is very similar in the two
splits, with a difference of only 0.1 seconds, on average.
Regarding the language queries, the training set has slightly
longer sentences than the val/test sets, with on average 2.9
extra words per sentence. We attribute this fact to the auto-
matic annotations procedure of the training set. We observe
that sometimes consecutive sentences that are annotated in
a short temporal span can be joined together by our anno-
tation pipeline. This does not happen for the val/test set, as
sentences were manually refined.

Table 1 also highlights a significant difference between
the two splits regarding the vocabulary size. The training

vocabulary (57.6K tokens) is almost three times larger than
the one of val/test (21.9K tokens). Note that the vocabulary
size correlates with the diversity in the language queries.
Thus, a more extensive vocabulary is a desirable feature in
training, considering that real-world application scenarios
might use a variety of words to express similar semantics.
Finally, the overlap between val/test and training vocabu-
laries is 83%, accounting for 18.1K unique words. There
are 3.8K val/test tokens that do not overlap the training set
vocabulary. However, these tokens only account for 0.69%
of the total tokens in the val/test splits (1.1M ). Moreover,
there are 39.5K unique tokens in the training set that are
not present in the val/test. Such unique tokens account for
6.6% of the total training tokens (3.8M ). These features of
the dataset will be valuable to evaluate the generalization
capabilities of models developed in MAD.

Figure 1 shows the distribution of the relative start time
of a moment (Fig. 1a) and the relative end time of a moment
(Fig. 1b). Fig. 1c shows the distribution of segments by du-
ration. We show MAD’s training split in blue and val/test in
red. We observe that the two splits have similar distributions
in all three sub-figures. However, we notice that the train-
ing set has slightly more moments at the very beginning and
at the very end of the videos (Fig. 1a and 1b). We attribute
this discrepancy to the fact that we did not remove the audio
descriptions from the movie’s opening and credits, as there
is not an automatic and reliable way to drop them; LSMDC
manually removed them. We opt for including such anno-
tations in our dataset. Overall, this design decision has lit-
tle impact on the data distribution but saves manual effort
and keeps our data collection method scalable. For the mo-
ment’s duration (Fig. 1c), both splits exhibit a bias towards
short instances and have a long tail distribution, with mo-
ments lasting up to 50 seconds for training and 30 seconds
for val/test.
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Videos Language Queries

Split Total Duration Duration Total # Words Total Vocabulary
Duration / Video / Moment Queries / Query Tokens Adj. Nouns Verbs Total

MAD (Train) 891.8 h 109.65 min 4.0 s 280.5K 13.5 3.8.M 4.8K 33.5K 12.2K 57.6K
MAD (Val/Test) 315.5 h 116.85 min 4.1 s 104.1K 10.6 1.1M 2.2K 11.6K 5.8K 21.9K

Table 1. Comparison between MAD training and MAD val/test splits. We verify that the two splits follow similar distributions. We
assess that the average video duration, moment length, and sentence length have similar values. Moreover, we highlight how 2/3 of the
video content is reserved for the training split. The size of the training split is also reflected in the total number of queries, with the training
set being 2.7× larger than the val/test set.
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(a) Moment start time histogram
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(c) Moment duration histogram

Figure 1. Histograms of moment start/end/duration in MAD splits. The plots represent the normalized (by video length) start/end
distributions (a-b), and absolute duration distribution (c) for moments belonging to the training and val/test splits of MAD. The figure
showcases that both training and val/test splits follow the same distributions with minor differences between them.

A.2. Sentences uniqueness

Repeating sentences within a movie can be a source
of ambiguity for the video-language grounding task. Our
automated annotation pipeline, does not enforce individ-
ual sentences to be semantically or grammatically different.
To quantify this phenomenon, we compute the METEOR
similarity score between each pair of sentences within a
movie. The METEOR metric is a widely used metric in
NLP [2, 5] which correlates well with human judgment on
sentence similarity. We use the implementation provided
by the NLTK library [1] and empirically observe that the
scores are bounded between [0, 1]. Given these boundaries,
we consider a sentence to be unique if its METEOR score
with every other sentence in the movie is below th=0.99.
Following this threshold, 99.7% of sentences can be con-
sidered unique. If we lower the threshold to th=0.9, the
uniqueness decreases slightly to 99.2%. This suggests that
only a few sentences repeat in each movie. We emphasize
that this estimation cannot directly assess the semantic sim-
ilarity between sentences, which is a much harder matching
problem and requires further research, but remains a good
approximation.

A.3. Additional language statistics

The MAD dataset contains about 384K query sentences.
The average sentence length is 12.7 tokens (see Tab 1 in
the main paper) with a standard deviation of 8.1 tokens.

We show in Figure 2 the distribution of the number of to-
kens per sentence which showcases the variability in query
length in the entire dataset. It is known in the field of com-
putational linguistics that natural language usually follows
a long-tailed distribution. We find that it is also the case in
the textual annotations of MAD. We compute the frequency
distribution of the vocabulary words and find that only 471
unique tokens out of 61.4K repeat more than 1000 times. In
comparison, that number increases to 6.3K if we relax the
frequency threshold to only 50 repetitions. This means that
90% of the tokens in the vocabulary (55.1K) appear less
than 50 times in the entire queries corpus.
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Figure 2. Sentences length distribution. Queries length is mea-
sured in number of tokens.



A.4. Diversity

Figure 3 shows the distributions of genres and years of
MAD movies. We can see that MAD has a wide range in the
years the movies are produced (from the 1940s to the last
decade) and a large variety of genres. A movie’s production
year is closely related to its picture quality, filming, edition
techniques [3], character’s attire, apparel, action types, etc.
The movie genre characterizes how people behave and talk,
storytelling techniques, the overall scenes setup, and how
fast-paced is the information displayed. These diversities
are contained in MAD’s videos and descriptions, thus en-
dowing our dataset with a large diversity in video content
and related query sentences.

B. VLG-Net Long-Form Adaptation
In the paper, we select VLG-Net [7] as a representative

model of the state-of-the-art architectures for the natural
language grounding in videos task. The challenging long-
form nature of the MAD dataset requires some technical
changes in the architecture. We detail below the three main
upgrades made to this baseline to enable the training and
inference over very long videos.

(i) Input. VLG-Net’s default inputs are either frames or
snippet-level features that span an entire video. As videos
are of different durations, VLG-Net interpolates or extrapo-
lates the features to a predefined length before feeding them
to the remaining of the architecture. We change such mod-
eling strategy with the following one: we consider a win-
dow of consecutive frames features (i.e., 128) and input
each window independently to the model instead of an en-
tire video. Frames are sampled at a constant frame rate (i.e.,
5 frames per second).

During training, for a given sentence and corresponding
grounding timestamps, we randomly select a window that
contains the annotation’s temporal extent. Let us draw an
example to understand this approach better. Given a clip’s
frameset V = {vi}nv

i=1 and an associated sentence S. We
can map the grounding timestamps from the time domain to
the frame-index one which we regard as (ts, te) such that
ts ≥ 1 and te ≤ nv . At training time, we sample a start-
ing index (t∗s) in the interval [te −W, ts] and construct our
training window as the sequence of frames {vi}

t∗s+W
i=t∗s

with
W = 128. Note that te −W ≤ ts.

This process can be seen as a temporal jittering process.
Thanks to this jittering process, the window enclosing the
ground-truth segment changes at every epoch (as t∗s changes
at every epoch) for a given sentence. This strategy can be
interpreted as a regularization technique that prevents the
model from leveraging intra-window biases in the input rep-
resentation. Moreover, it promotes the model to understand
the multi-modal input better and predict the best temporal
extent for each language query.
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(a) Movies genres.
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(b) Movies release year.

Figure 3. Diversity. The Figure depicts the wide diversity con-
tained in the dataset. Spanning 22 different genres and 90 years
of cinema history, MAD presents a highly diverse dataset for the
video grounding task.

At inference time, we adopt a sliding window technique,
which strides a fixed window over the entire movie. The
window size is kept fixed to 128 frames, and we use a
stride of 64 frames. For each window, VLG-Net produces
a set of proposals with an associated confidence score. The
window-level predictions are then collected and sorted ac-
cording to the confidence score. The recall metric is mea-
sured at the video-level.

(ii) Negative samples. The original VLG-Net imple-
mentation does not make use of negative samples during
training. This means that only positive video-language
pairs are used. Following the change in the input mod-
eling, the model now only has access to a local portion
of the video when making a prediction. Therefore, it is
deemed necessary to train the VLG-Net architecture using
negatives/unpaired video-language pairs. This teaches the
model to predict low confidence scores for windows that do
not contain visual information relevant to the query being
grounded (which are the majority during inference).

Negative samples are defined as a video window (128
frames) with IoU is equal to 0 with the ground truth tempo-
ral span of a given sentence. With respect to the previous ex-
ample, a negative video sample is considered as a sequence
of consecutive frames of size W which starting index (t∗s)
is sampled outside of the interval [ts −W, te].

At training time, for each sentence, we randomly select
a negative sample within the same movie with a probability



p or a positive sample (i.e., window containing the ground
truth) with probability 1 − p. Our experiments show that
selecting a negative 70% of the times yields the best perfor-
mance. We do not consider cross-movie negative samples.

(iii) Modules. In Section 4, we described how, to pro-
mote a fair comparison against the CLIP baseline [4], we
adopted CLIP’s visual and language features as inputs for
the VLG-Net baseline. Notably, the language feature ex-
traction strategy poses a technical challenge. The origi-
nal sentence tokenizer used by VLG-Net has the capabil-
ity of extracting syntactic dependencies that are represented
as edges in the SyntacGCN module. Because CLIP uses a
different tokenizer, we could not retrieve such syntactic de-
pendencies; hence we remove the SyntacGCN module and
only retaining the LSTM layers for the language branch.
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