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Supplementary Material

A. Proof of Lemma 2.1
For clarity, we restate the lemma here.

Lemma 2.1 Let f : [0, 1]n ! [0, 1] be a neural network
satisfying |f(x) � f(y)|  Lp

n
kx � yk. Let f̄ denote the

median value of f on the unit hypercube. Then, for an image
x 2 [0, 1]n of uniform random pixels, we have |f(x)� f̄ | 
t with probability at least

1� Le�2⇡nt2/L2

⇡t
p
n

.

Consider a set A ⇢ [0, 1]n, and let d denote the `2 dis-
tance metric. We define the ✏-expansion of the set A as
A(✏) = {x 2 [0, 1]n | d(x,A)  ✏}. In plain words, A(✏)
is the set of all points lying within ✏ units of the set A.

Our proof will make use of the isoperimetric inequality
first presented by Ledoux [24]. We use the following variant
with tighter constants proved by Shafahi et al. in [31].

Lemma A.1 (Isoperimetric inequality on the unit cube)
Consider a measurable subset of the cube A ⇢ [0, 1]n,
and a 2-norm distance metric d(x, y) = kx � yk2. Let
�(z) = (2⇡)�

1
2

R z
�1 e�t2/2dt, and let ↵ be the scalar that

satisfies �(↵) = vol[A]. Then

vol[A(✏)] � �
⇣
↵+ ✏

p
2⇡

⌘
. (3)

In particular, if vol(A) � 1/2, then we simply have

vol[A(✏)] � 1� e�2⇡✏2

2⇡✏
. (4)

To prove Lemma 2.1, we start by choosing A =

{x|f(x)  f̄}. Now, consider any x 2 A
⇣
t
p
n

L

⌘
. From

the Lipschitz bound on f we have

|f(x)� f(y)|  Lp
n
kx� yk,

for any y. If we choose y = argminz2A kx � zk to be the
closest point to x in the set A, we have that kz�yk  t

p
n

L ,
and so

|f(x)� f(y)|  t.

But f(y)  f̄ because y 2 A. From this, we see that for
any choice of x 2 A

⇣
t
p
n

L

⌘
we have

f(x)� f̄  t. (5)

Recall that f̄ is the median value of f on the unit cube, and
so we have that

vol[A] � 1

2
.

We can then apply Lemma A.1 with ✏ = t
p
n

L , and we see
that

vol

A
✓
t

p
n

L

◆�
� 1� Le�2⇡t2n/L2

2⇡t
p
n

.

We conclude that a randomly chosen x 2 [0, 1]n will lie in
A
⇣

t
p
n

L

⌘
, and therefore satisfy (5) with probability at least

1� Le�2⇡t2n/L2

2⇡t
p
n

.

An analogous argument with A = {x|f(x) � f̄} shows
that a randomly chosen x 2 [0, 1]n will satisfy

f̄ � f(x)  t. (6)

with the same probability. Applying a union bound, we see
that a randomly chosen x will satisfy (5) and (6) simultane-
ously with probability at least 1� Le�⇡t2n/L2

⇡t
p
n

.

B. Decision regions
Off-manifold decision regions We present a few off-
manifold decision boundaries in this section. In Fig. 11,
we show decision regions of multiple off manifold images
where all the pixels are uniformly sampled in the image
space. Each row is a model, and each column is a randomly
sampled triplet. We observe that the decision regions as-
signed to such off-manifold images are quite uniform for a
given model. For example, in DenseNet, all such images
are assigned to Bird class, while in ViT, they are assigned
to Frog or Automobile. In Fig. 12, we show decision re-
gions for a multiple triplets of shuffled images. (Expanded
version of Fig.2). Even in this type of off-manifold images,
we see a similar pattern that the models are assigning the
samplings to a certain set of classes. This emphasises that
the decision regions are more structured close to the image
manifold and are rather uniform farther away from the man-
ifold.

C. Additional Reproducibility results
Region similarity score ablation We performed an addi-
tional ablation to check if the region similarity score is cor-
related with prediction similarity (Intersection over union of
predictions on a given set of points) on augmented test data
across models trained on different seeds. So we repeated
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Figure 11. Decision regions when all the images are uniformly sampled. Each row corresponds to a model,while each column is a new
sampling of the triplet
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Figure 12. Decision regions when the pixels are randomly shuffled. Each row corresponds to a model,while each column is a new sampling
of the triplet. Extended version of Fig 2.



Model Test data Aug. test data Original

WideResNet-30 96.24 84.79 86.61
ResNet-18 95.96 84.02 83.74

ViT 86.94 78.44 75.13
MLP-Mixer 82.55 69.89 66.51

Table 2. Scores are computed across 3 trained models (with dif-
ferent init seeds and SGD) for each architecture.

[Deer,Horse,Bird] [Frog,Frog,Frog] [Auto,Horse,Truck] [Ship,Dog,Deer] [Ship,Truck,Airplane]
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Figure 13. We present decision regions for random triplets sam-
pled from the training set for ResNet18. We see the decision re-
gions are almost same with and without mixup.

our analysis, but without interpolated planes, on 4 models
with test images and randomly augmented test images (one
augmentation per image - 100k images). Augmentations
include flips, crops, perspectives, rotations, Gaussian blur,
color-jitter, and random contrast. Results are in Table 2 with
2 scores, one is IoU on the test data (10k images) predic-
tions, and the second score is IoU calculated on augmented
data (100k images). The relative ordering of the networks
is preserved exactly by all three metrics.

With and without Mixup in training In order to under-
stand how having mixup in the training affects the deci-
sion boundaries, we examined 2 cases, ResNet18 and Vi-
sion Transformer. In Fig. 13, we show 5 randomly sampled
triplets and their decision regions produced by ResNet18
trained with and without mixup. We can see there is a
slight difference, but not quite significant. We quantified
how “similar” the decision surfaces are with region similar-
ity score introduced in Section 3.2. The score for Resnet18
is 0.774, and for ViT is 0.808.

D. Additional Double Descent results

Additional plots at k = 10 As referenced in main, in
Figure 14, we plotted decision regions of points sampled
from the same class and are given correct labels (even in
label noise scenario). We can see that when there is no la-
bel noise there are a few fragmented class regions and the
regions explode when the model is trained with label noise.
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Figure 14. Decision boundaries of 3 correctly labeled points at
k = 10 on models with and without label noise.

Margin plots We computed median margins for 1000
train data points (averaged over 5 random directions for
each point) as shown in Figure 15. We see that the over-
all margins drop by the introduction of label noise in train-
ing. In label noise case, we also show how margins differ
for correctly labeled and mislabeled points. We see misla-
beled points have significatly lower margins than correctly
labeled points, however the margins increase for both types
of points as we increase the model capacity (i.e. k in this
case).

Figure 15. Median Margins - models with and without label noise.
Y-axis reflects the average perturbation size needed to reach deci-
sion boundary in a random direction.

Additional error plots In Fig. 6, we have seen how the
test errors change as we progressively increase the model
capacity. Figure 16 shows how training errors change in ad-
dition to test errors. We can see that the train error reaches
0 at much higher k with label noise than without. In model
without label noise, the interpolation begins at k = 10
which is the true interpolation threshold when there is no
label noise. We further examine how correctly labeled and
mislabeled points are behaving in Figure 17. The green
lines represent the overall train error, while orange shows
the error on correctly labeled points. The mislabeled points
are shown in grey, and the error is computed as incorrect



Figure 16. In this figure we show the train and test errors with and
without label noise.

Figure 17. In this figure, we show the train data errors for with and
without label noise cases in green color. We also investigate how
the errors are changing for correctly labeled points (orange curve)
and in mislabeled points (grey curve).

predictions with respect to assigned class. We see that till
k = 4 the mislabeled points are not fit to their assigned
class which partially explains the low test error of test data.
However at k = 10 most of the correctly labeled points
are fit while some of the mislabeled points are still not fit
to their assigned class. This trend diverges from what is
seen in simple model families where the second peak of test
error coincides with the model capacity with 0 training er-
ror. This shows that double descent in more complicated
in neural-network architectures than what is seen in simple
linear models.

Region similarity scores from random data sampling
In Figure 10, we have seen how decision boundaries change
when we compare two runs of the same model architecture
with different initializations. In Figure 18, we show how
the ordering of the data changes the decision boundaries.
We see that the region similarity or reproducibility across
training runs is high in the under- and over-parametrized
regimes, but it drops drastically closer to the interpolation
threshold. This is the exact same behaviour observed in Fig-
ure 10. This shows that k = 10 is a quite unstable with re-
spect to different types of variations in the model training.

Additional plots across varying model capacities and
noise In Figures 19 and 20 , we show how the decision
regions change with and without label noise and with vary-
ing model capacities across different samplings of triplets.

Figure 18. Region similarity with respect to random data sam-
plings for models of different widths
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Ground truth: Cat Cat

(a) All points are from same class (Cat), and are correctly labeled even in label noise case.
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Ground truth: Horse Airplane

(b) The images are sampled from 3 different classes and are correctly labeled.

Bird
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Ground truth: Frog Automobile

(c) The images are sampled from 3 different classes and are correctly labeled. Additional case

Figure 19. Decision boundaries for models of varying width. We show additional decision surfaces with different types of triplets here.
All points are correctly labeled
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Ground truth: Bird Bird

D
eer

(a) In this triplet, when there is no label noise, all three belonged to Bird class. But in the label noise case, the third point is mislabeled as Deer.

Truck
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Ground truth: Truck Truck

A
irplane

(b) In this triplet, when there is no label noise, all three belonged to Truck class. But in the label noise case, the third point is mislabeled as Airplane.

Figure 20. Decision boundaries for models of varying width. We show decision surfaces with different types of triplets here. One point
is mislabeled.
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