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Supplementary Material

In the supplementary material, we provide additional de-
tailed results and visual comparisons. In Section A, we re-
port the detailed experimental results on UAV123 and La-
SOT datasets, and supplement results for OTB [9] dataset.
We then provide some visual comparison results of our
CSWinTT with the state-of-the-art trackers in Section B.
Finally, we show attribute-based evaluation results on the
LaSOT dataset in Section C.

A. More Detailed Results

Here, we supplement with experimental result for the
OTB [9] benchmarks, and provide more detailed results on
UAV123 [7] and LaSOT [5] benchmarks. OTB [9] is a com-
monly used tracking dataset by the visual object tracking
community including 100 sequences that are categorized
according to 11 attributes. However, since the OTB dataset
was proposed relatively early, most of the algorithms are
now less distinguishable on this dataset (e.g., most algo-
rithms are close to or above 90% in terms of Precision).

We use the precision plot and success plot for evaluating
the trackers. For precision, we calculate the Euclidean dis-
tance of the centers between an estimated bounding box and
the ground truth. The precision plot shows the percentage
of the estimated bounding box in each frame whose center
distance is less than a given threshold. Precision reflects
the performance of location measurement of tracking algo-
rithms but does not consider the target size. Success deter-
mines whether a tracker has been tracking a target success-
fully by calculating the size of the overlapped area, which is
the IoU (intersection over union) between ground-truth and
estimated box. Success plot shows the percentage of the
estimated box whose overlap score is larger than a given
threshold, and we adopt the Area Under the Curve (AUC)
to rank trackers. We refer readers to [9] for more details
about the metrics.

We compare with the most recent transformer track-
ers and some other representative algorithms, including
STARK-ST50 [10], TransT [2], TMT [8], PrDiMP [4],
DiMP [1], AutoMatch [11], Ocean [12], ATOM [3], and
SiamRPN++ [6]. The precision plot and success plot on
UAV123, LaSOT and OTB datasets are shown in Figure 1,
Figure 2 and Figure 3 respectively. Our CSWinTT tracker
achieves the best performance on both UAV123 and La-
SOT datasets, and gets a relatively good result on the OTB
dataset. On the OTB dataset, our approach gets a score of
88.4% in Precision and 68.0% in Success, this result does
not exceed all tracking algorithms, but it performs very well
in the transformer-based trackers such as STARK-ST50
[10] and TransT [2]. On UAV123, our approach achieves
an absolute gain of 2.1% precision score and 1.3% success
score over the previous best method STARK-ST50 [10].

(a) Precision plots (b) Success plots

Figure 1. Precision and success plots on UAV123 [7].

(a) Precision plots (b) Success plots

Figure 2. Precision and success plots on LaSOT [5] test set.

(a) Precision plots (b) Success plots

Figure 3. Precision and success plots on OTB [9].

On the challenging LaSOT dataset, our approach obtains a
70.9% precision score and 66.2% success score, which sig-
nificantly outperforms all previous state-of-the-art trackers.

B. Visual Comparisons

In Figure 4, we show exemplary visual comparisons be-
tween our approach and four state-of-the-art trackers on five
challenging sequences. The sequences either contain mo-
tion blur, scale variation, occlusions, and similar objects
from the challenging LaSOT [5] benchmark. The sequences
in Figure 4 from top to bottom are ’bottle-1’, ’goldfish-10’,
’guitar-10’, ’skateboard-8’, and ’zebra-16’. It is clear from
the comparison that, benefiting from the multi-scale win-
dow strategy which has better discrimination ability when
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TMTCSWinTT (Ours) STARK-ST50 TransTGround-Truth PrDiMP

Figure 4. A visual comparison in special situation of our CSWinTT with other state-of-the-art trackers, i.e., STARK-ST50 [10], TransT [2],
TrDiMP [8] and PrDiMP [4]. The ground-truth box (red line) and estimated boxes of each tracker is marked by lines with different colors as
shown at the bottom. Each sequence covers one specific situation, including motion blur (first row), scale variation(second row), occlusions
(third row) and similar objects (fourth and fifth rows) from the LaSOT [5] test set (from top to bottom are ’bottle-1’, ’goldfish-10’, ’guitar-
10’, ’skateboard-8’, ’zebra-16’).

the target scale changes greatly, our approach can locate the
target more accurately when motion blur (’bottle-1’, first
row) and scale variation (’goldfish-10’, second row) have
happened. And with the cyclic shifting window attention
which ensures the integrity of the tracking object and brings
greater accuracy by expanding window samples, our tracker
can better discriminate targets from complex backgrounds
in the situation of occlusions (’guitar-10’, third row) and
similar objects (’skateboard-8’, fourth row and ’zebra-16’,
fifth row).

C. Attribute Analysis

The attribute-based evaluation in terms of success on La-
SOT [5] benchmark shown in Figure 5. Compared to other
transformer trackers such as START-ST50 [10], TransT [2]
and TrDiMP [8], our approach show remarkable results
w.r.t. Aspect Ration Change, Camera Motion, Fast Motion,
Low Resolution, Out-of-View, Partial Occlusion, Rotation,
Scale Variation, and Viewpoint Change. This is because the
proposed multi-scale cyclic shifting window attention that
maintains the integrity of the object is very effective, com-
pared with others our method performs more robustly when
the appearance of the target changes greatly. Especially,
in the situation of scale variation and out-of-view port, our
tracker exhibits remarkable improvement and obtains AUC

scores of 70.3% and 63.2%, significantly outperforms the
second-best trackers by 3.9% and 1.3% respectively.

References
[1] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-
ing. In Proceedings of the ICCV, pages 6182–6191. IEEE,
October 2019. 1

[2] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking. In Proceedings of
the CVPR, pages 8126–8135, 2021. 1, 2

[3] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and
Michael Felsberg. Atom: Accurate tracking by overlap max-
imization. In Proceedings of the CVPR, pages 4660–4669.
IEEE, June 2019. 1

[4] Martin Danelljan, Luc Van Gool, and Radu Timofte. Proba-
bilistic regression for visual tracking. In Proceedings of the
CVPR, pages 7183–7192, 2020. 1, 2

[5] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia
Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.
Lasot: A high-quality benchmark for large-scale single ob-
ject tracking. In Proceedings of the CVPR. IEEE, June 2019.
1, 2, 3

[6] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
and Junjie Yan. Siamrpn++: Evolution of siamese visual
tracking with very deep networks. In Proceedings of the
CVPR, pages 4282–4291. IEEE, June 2019. 1

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#9651

CVPR
#9651

CVPR 2022 Submission #9651. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 5. Attribute-based evaluation on the LaSOT [5] test set. The legend shows the AUC scores of the success plots.

[7] Matthias Mueller, Neil Smith, and Bernard Ghanem. A
benchmark and simulator for uav tracking. In Proceedings
of the ECCV, pages 445–461. Springer, 2016. 1

[8] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.
Transformer meets tracker: Exploiting temporal context for
robust visual tracking. In Proceedings of the CVPR, pages
1571–1580, 2021. 1, 2

[9] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-
ing benchmark. IEEE TPAMI, 37(9):1834–1848, 2015. 1

[10] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and
Huchuan Lu. Learning spatio-temporal transformer for vi-
sual tracking. In Proceedings of the ICCV, 2021. 1, 2

[11] Zhipeng Zhang, Yihao Liu, Xiao Wang, Bing Li, and Weim-
ing Hu. Learn to match: Automatic matching network de-
sign for visual tracking. In Proceedings of the ICCV, pages
13339–13348, 2021. 1

[12] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and
Weiming Hu. Ocean: Object-aware anchor-free tracking. In
Proceedings of the ECCV, pages 771–787, 2020. 1

3


	. More Detailed Results
	. Visual Comparisons
	. Attribute Analysis

