
A. Proofs

Lemma 3. Let σ : R → R and µ : R → R be given
functions. The following facts hold:

(i) if σ ∈ L∞(R) and µ ∈ BV (R) then µ ∗ σ ∈
W 1,∞(R);

(ii) if σ ∈ L∞(R) and µ ∈W 1,1(R) then the weak deriva-
tive of µ ∗ σ satisfies

D(µ ∗ σ)(x) = (Dµ ∗ σ)(x)

for almost all x ∈ R;

(iii) if σ ∈ BV (R) and µ ∈W 1,1(R) then µ ∗ σ ∈ C1(R),
its derivative is uniformly continuous and one has

d(µ ∗ σ)

dx
(x) = (Dµ ∗ σ)(x)

for all x ∈ R.

Proof. We first show (i). It is immediate to check that

‖µ ∗ σ‖∞ ≤ ‖µ‖1 ‖σ‖∞ < +∞ . (22)

We choose x1 < x2 ∈ R and, thanks to Fubini’s theorem
and a change of variable, we obtain the following estimate:

|(µ ∗ σ)(x1)− (µ ∗ σ)(x2)|

=

∣∣∣∣∫
y∈R

(
µ(x1 − y)− µ(x2 − y)

)
σ(y) dy

∣∣∣∣
≤
∫
y∈R
|Dµ|

(
[x1 − y, x2 − y]

)
|σ(y)| dy

≤ ‖σ‖∞
∫
y∈R

∫
z∈R

χ[x1,x2](z + y) d|Dµ|(z) dy

= ‖σ‖∞
∫
z∈R

∫
y∈R

χ[x1,x2](z + y) dy d|Dµ|(z)

≤ ‖σ‖∞ |Dµ|(R) |x1 − x2| .

This shows that µ∗σ is a Lipschitz function (with Lipschitz
constant bounded above by ‖σ‖∞ |Dµ|(R)). Therefore the
proof of (i) follows from the Sobolev characterisation of
Lipschitz functions combined with (22). Let us prove (ii)
by showing that µ ∗ σ is weakly differentiable, thus pro-
viding a pointwise almost everywhere representation of its
weak derivative. Let φ ∈ C∞c (R) be a given test function.
By using Fubini’s Theorem, the definition of weak deriva-

tive, and the change of variable in the integration, we obtain∫
R

(µ ∗ σ)(x)
dφ

dx
(x) dx

=

∫
x∈R

∫
y∈R

µ(x− y)σ(y) dy
dφ

dx
(x) dx

=

∫
y∈R

∫
x∈R

µ(x− y)
dφ

dx
(x) dxσ(y) dy

= −
∫
x∈R

∫
y∈R

Dµ(x− y)σ(y) dy φ(x) dx

= −
∫
x∈R

(Dµ ∗ σ)(x)φ(x) dx .

This shows (ii). We finally prove (iii). By (i) and (ii) we
already know that µ∗σ ∈W 1,∞(R) and its weak derivative
satisfies D(µ ∗ σ)(x) = (Dµ ∗ σ)(x) for almost all x ∈ R.
The conclusion is achieved as soon as we show that (Dµ ∗
σ)(x) is a continuous function. We have for x1 < x2 ∈ R

|(Dµ ∗ σ)(x1)− (Dµ ∗ σ)(x2)|

=

∣∣∣∣∫
y∈R

Dµ(x1 − y)σ(y) dy+

−
∫
y∈R

Dµ(x2 − y)σ(y) dy

∣∣∣∣
=

∣∣∣∣∫
z∈R

Dµ(z)
(
σ(x1 − z)− σ(x2 − z)

)
dz

∣∣∣∣
≤
∫
z∈R

∫
t∈R

χ[x1,x2](t+ z) d|Dσ|(t) |Dµ(z)|dz

=

∫
t∈R

∫
z∈R

χ[x1,x2](t+ z) |Dµ(z)|dz d|Dσ|(t)

=

∫
t∈R

∫
z∈R

χ[x1,x2](t+ z) |Dµ(z)|dz d|Dσ|(t) .

Denote by κ the non-negative, finite Borel measure defined
by dκ = |Dµ(z)|dz. Since κ is absolutely continuous with
respect to the Lebesgue measure, for all ε > 0 there exists
δ > 0 such that |x1 − x2| < δ implies κ([x1, x2]) < ε.
Therefore we get

|(Dµ ∗ σ)(x1)− (Dµ ∗ σ)(x2)|

≤
∫
t∈R

κ([x1 − t, x2 − t]) d|Dσ|(t)

≤ ε |Dσ|(R)

as soon as |x1 − x2| ≤ δ, which proves the uniform conti-
nuity of Dµ ∗ σ and concludes the proof.

Proof of Proposition 1

Proof. The first claim (i) follows from the definition of con-
volution. The proofs of (ii) and (iii) follow from the ap-
plication of Lemma 3, noticing that, by definition, a quan-
tiser (1) satisfies σ ∈ L∞(R) (in particular, ‖σ‖∞ =
maxq∈Q{|q|}).



Proof of Theorem 2

Proof. First, we note that

‖xλ̂`,` − x`‖ :=

(
n∑̀
i=1

|xλ̂`,`,i − x`,i|
2

) 1
2

≤
√
n` max

i∈{1,2,...,n`}
{|xλ̂`,`,i − x`,i|} ,

where xλ̂`,`,i and x`,i denote the i-th components of the `-
th layer regularised and quantised features, respectively. We
define

ī := arg max
i∈{1,2,...,n`}

{|xλ̂`,`,i − x`,i|} .

Therefore, since n` is arbitrary but finite, a sufficient condi-
tion for (19) is

|xλ̂`,`,̄i − x`,̄i|
r`(λ)

−−−→
λ→0

0 . (23)

To simplify the notation, in the following we will omit the
subscript index ī. First, we conveniently rewrite (23) ac-
cording to the definition of limit:

∀ ε > 0 , ∃ λ̃ > 0 :

|xλ̂`,` − x`| < εr`(λ) , ∀ 0 < λ < λ̃ .
(24)

Then, we argue by induction.
To prove the base step (` = 1) we need to consider

two cases: x1 = 0 and x1 = 1. First, we suppose x1 =
σ(Sm1

(x0)) = 0; this implies that Sm1
(x0) < 0. Prop-

erty (14) implies xλ̂1,1
≥ x1, which implies |xλ̂1,1

− x1| =
xλ̂1,1

= σλ1
(Sm1

(x0)). Then, we can apply σ−1
λ1

to both
sides of the inequality in (24) obtaining the following con-
dition:

∀ ε > 0 , ∃ λ̃ > 0 :

Sm1(x0) < σ−1
λ1

(εr1(λ)) , ∀ 0 < λ < λ̃ ,

whose validity is guaranteed by hypothesis (15). Now, we
analyse the case x1 = 1. Property (14) implies xλ̂1,1

≤ x1,
hence |xλ̂1,1

− x1| = 1 − xλ̂1,1
= 1 − σλ1

(Sm1
(x0)). In

this case, condition (24) becomes

∀ ε > 0 , ∃ λ̃ > 0 :

1− σλ1
(Sm1

(x0)) < εr1(λ) , ∀ 0 < λ < λ̃ .
(25)

We have two sub-cases: Sm1
(x0) > 0 and Sm1

(x0) = 0.
In the first sub-case, by rearranging terms and applying σ−1

λ1

to both sides of (25), we derive the condition

∀ ε > 0 , ∃ λ̃ > 0 :

σ−1
λ1

(1− εr1(λ)) < Sm1(x0) , ∀ 0 < λ < λ̃ ,

which is granted by hypothesis (16). In the second sub-
case, we can divide both sides of (25) by r1(λ) and obtain
the condition

∀ ε > 0 , ∃ λ̃ > 0 :

1− σλ1(0)

r1(λ)
< ε , ∀ 0 < λ < λ̃ ,

which holds by hypothesis (17).
We now proceed to the inductive step (` > 1). We have

two possibilities for x`:

(A) x` = 0;

(B) x` = 1.

We start with case (A). We observe that

sλ̂`−1,`
− s` = Sm`

(xλ̂`−1,`−1)− Sm`
(x`−1)

= Sm`
(xλ̂`−1,`−1 − x`−1) −−−→

λ→0
0 ,

(26)

since Sm`
is linear and ‖xλ̂`−1,`−1 − x`−1‖ −−−→

λ→0
0 by

the inductive hypothesis. With reference to H+
0 , case (A)

implies that s` < 0. Together with (26), this implies that

∃λ∗ = λ∗(s`) > 0 :

sλ̂`−1,`
< −|s`|

2
< 0 , ∀ 0 < λ < λ∗ .

Since x` = 0 and xλ̂`,` = σλ`(sλ̂`−1,`
) ≥ 0, condition (24)

can be rewritten as

∀ ε > 0 , ∃ λ̃ > 0 :

σλ`(sλ̂`−1,`
) < εr`(λ) , ∀ 0 < λ < λ̃ .

Due to the monotonicity of σλ` , we have σλ`(sλ̂`−1,`
) <

σλ`(−|s`|/2) , ∀ 0 < λ < λ∗. Therefore, a sufficient con-
dition to guarantee the convergence is that

∀ ε > 0 , ∃ 0 < λ̃ ≤ λ∗ :

− |s`|
2

< σ−1
λ`

(εr`(λ)) , ∀ 0 < λ < λ̃ .

This condition is granted for every s` < 0 by (15). We now
move to case (B). This case (x` = 1) might originate from
two sub-cases:

(i) s` > 0;

(ii) s` = 0.

The proof of sub-case (i) is similar to the proof for case
(A). Given s` > 0, since sλ̂`−1,`

−−−→
λ→0

s` by the inductive

hypothesis, we have that

∃λ∗ = λ∗(s`) > 0 :

0 <
s`
2
< sλ̂`−1,`

.



Then, since x` = 1 and x` = σλ`(sλ̂`−1,`
) ≤ 1, we can

rewrite (24) as

∀ ε > 0 , ∃ λ̃ > 0 :

1− σλ`(sλ̂`−1,`
) < εr`(λ) , ∀ 0 < λ < λ̃ .

Since σλ`(sλ̂`−1,`
) > σλ`(s`/2), a sufficient condition to

get convergence is that

∀ ε > 0 , ∃ 0 < λ̃ < λ∗ :
s`
2
> σ−1

λ`
(1− εr`(λ)) , ∀ 0 < λ < λ̃ .

This is guaranteed for every s` > 0 by (15). Case (ii) is
more delicate, since sλ̂`−1,`

can be positioned in two ways
with respect to s` = 0:

(a) λ > 0 is such that sλ̂`−1,`
≥ 0;

(b) λ > 0 is such that sλ̂`−1,`
< 0.

In case (a), it is sufficient to note that the monotonicity of
σλ` implies 1−σλ`(sλ̂`−1,`

) ≤ 1−σλ`(0), since sλ̂`−1,`
≥

0. Then, condition (24) can be rewritten as

∀ ε > 0 , ∃ λ̃ > 0 :

1− σλ`(0)

r`(λ)
< ε , ∀ 0 < λ < λ̃ .

This is guaranteed by (17). To prove the last case (b), we
first observe that

sλ̂`−1,`
= sλ̂`−1,`

− s`

=
(
〈w`,xλ̂`−1,`−1〉+ b`

)
− (〈w`,x`−1〉+ b`)

= 〈w`,xλ̂`−1,`−1 − x`−1〉

(which follows from s` = 0) and apply the Cauchy-
Schwartz inequality to obtain the following upper bound:

|sλ̂`−1,`
| ≤ ‖w`‖ ‖xλ̂`−1,`−1 − x`−1‖ . (27)

Then, we rewrite (24) as

∀ ε > 0 , ∃ λ̃ > 0 :

− sλ̂`−1,`
< −σ−1

λ`
(1− εr`(λ)) , ∀ 0 < λ < λ̃ .

Observation (27) allows us to write a slightly stronger but
sufficient condition for convergence:

∀ ε > 0 , ∃ λ̃ > 0 :

‖w`‖ ‖xλ̂`−1,`−1 − x`−1‖ ≤ −σ−1
λ`

(1− εr`(λ)) ,

∀ 0 < λ < λ̃ ,

where we used the fact that −sλ̂`−1,`
= |sλ̂`−1,`

| (since
sλ̂`−1,`

< 0). The inner inequality can be rewritten as

‖xλ̂`−1,`−1 − x`−1‖
−σ−1

λ`
(1− εr`(λ))

≤ 1

‖w`‖
; (28)

since w` is fixed but arbitrary (it is part of the parameter
m`), the term on the right can be arbitrarily small, and
therefore a sufficient condition to ensure (28) for λ small
enough is

∀ ε > 0 ,
‖xλ̂`−1,`−1 − x`−1‖
−σ−1

λ`
(1− εr`(λ))

−−−→
λ→0

0 . (29)

By the inductive hypothesis (where we set ε = 1),

∃ λ̃`−1 > 0 :

‖xλ̂`−1,`−1 − x`−1‖ < r`−1(λ) , ∀ 0 < λ < λ̃`−1 .

Therefore, (18) enforces the convergence of the upper
bound in the following inequality:

‖xλ̂`−1,`−1 − x`−1‖
−σ−1

λ`
(1− εr`(λ))

≤ r`−1(λ)

−σ−1
λ`

(1− εr`(λ))
,

and therefore (29) follows. This completes the proof of the
theorem.



B. Other experiments

The experimental findings reported in Section 4 refer to
a ternary VGG-like network solving CIFAR-10. To corrob-
orate the validity of our findings, we performed additional
experiments on two different scenarios, where we changed
the data set, the network topology, and the quantisation pol-
icy.

Given the findings reported in Section 4, we used differ-
ent noise types only when analysing static noise schedules.
We constrained the noise type to uniform when analysing
dynamic noise schedules.

As in the original CIFAR-10 experiments, we evaluated
each hyper-parameter configuration using five-fold cross-
validation on the training partitions of the chosen data sets.

B.1. SVHN

Street View House Numbers (SVHN) is an image classi-
fication data set [19]. It contains ∼ 99k RGB-encoded im-
ages representing decimal digits from house number plates.
It consists of a training partition (∼ 73k images) and a val-
idation partition (∼ 26k images).

We used the same VGG-like network from the CIFAR-
10 experiments. Again, we quantised all the weights and
features to be ternary, and we kept the weights of the last
layer in floating-point format.

In each experimental unit, we trained the network for 500
epochs using mini-batches of 256 images, the cross-entropy
loss function, and the ADAM optimiser with an initial learn-
ing rate of 10−3, decreased to 10−4 after 400 epochs.

In agreement with the CIFAR-10 findings, Figures 4a 4b
show that QNNs trained using static STE variants based
on different noise types converge to the same accuracy.
We note that the uniform noise type in combination with
the random forward computation strategy seems to perform
slightly worse during the earlier stages of training.

Figures 5a, 5b, 5c show that the quality of different decay
interval strategies (as measured by the final accuracy of the
trained networks) is better for those that are more coherent
with the hypothesis of Theorem 2, namely the partition and
same start strategies. Independently of the forward compu-
tation strategy, the same end decay interval strategy is still
the worst amongst the tested ones.

B.2. GSC

Google Speech Commands (GSC) is a keyword spotting
data set [25]. Keyword spotting requires mapping word ut-
terances to the corresponding items in a given vocabulary.
It is an elementary though important speech recognition
task, having widespread applications to speech-based user
interactions with embedded devices such as smartphones
or smartwatches. GSC contains ∼ 106k one-second ut-
terances of 35 different keywords recorded at 16kHz, plus

(a)

(b)

Figure 4. Performance of ANA on the SVHN data set using static
noise schedules in combination with different forward computa-
tion strategies: random 4a, mode 4b. Each plot reports differ-
ent noise types using different colours: uniform (blue), triangular
(green), normal (red), logistic (yellow).

recordings of random background noise. There are different
keyword spotting tasks associated with GSC; in our experi-
ments, we focussed on the simplified 12-class classification
problem.

We used the DSCNN network topology [29], a fully-
feedforward network topology consisting of eight convolu-
tional layers (four blocks concatenating a depth-wise convo-
lution with a point-wise one) and one fully-connected layer;
therefore, L = 9. This time, we quantised weights aiming
for the INT4 (signed) data type, and features aiming for
the UINT4 (unsigned) data type. Coherently with literature
practice, we kept the last layer in floating-point format.

In each experimental unit, we trained the network for 120
epochs using mini-batches of 256 pre-processed utterances,
the cross-entropy loss function, and the ADAM optimiser
with an initial learning rate of 10−3, decreased to 10−4 after
100 epochs.

Figures 6a 6b show that QNNs trained using static STE
variants based on different noise types still converge to ap-
proximately the same accuracy. However, in this scenario
we can observe that the accuracy of QNNs trained using the



(a)

(b)

(c)

Figure 5. Performance of ANA on the SVHN data set using dy-
namic noise schedules (static means, dynamic variances) under
uniform noise and different forward computation strategies: ex-
pectation 5a, random 5b, mode 5c. Each plot reports multiple
schedules: decay intervals: same start (green), same end (red),
partition (yellow), overlapped (blue); decay power law: homoge-
neous (continuous), progressive (dotted).

triangular noise type has lower variability, whereas that of
QNNs trained using uniform noise has higher variability.

Figures 7a, 7b, 7c show that the quality of different de-
cay interval strategies (as measured by the final accuracy
of the trained networks) is better for those that are more
coherent with the hypothesis of Theorem 2. In particular,

(a)

(b)

Figure 6. Performance of ANA on the GSC data set using static
noise schedules in combination with different forward computa-
tion strategies: random 6a, mode 6b. Each plot reports differ-
ent noise types using different colours: uniform (blue), triangular
(green), normal (red), logistic (yellow).

QNNs trained using the partition strategy can achieve ap-
proximately the same accuracy as networks trained using
static noise schedules. Independently of the forward com-
putation strategy, the same end decay interval strategy is
still the worst amongst the tested ones.



(a)

(b)

(c)

Figure 7. Performance of ANA on the GSC data set using dy-
namic noise schedules (static means, dynamic variances) under
uniform noise and different forward computation strategies: ex-
pectation 7a, random 7b, mode 7c. Each plot reports multiple
schedules: decay intervals: same start (green), same end (red),
partition (yellow), overlapped (blue); decay power law: homoge-
neous (continuous), progressive (dotted).


