Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations

Supplementary Materials

1 Hyperparameters and model details

1.1 Interactive Concept Swapping Networks

In our experiments, the prototype slots were initialized randomly from a truncated Gaussian distribution with mean $\mu = 0$, variance $\sigma^2 = 0.5$, minimum $a = -1$, and maximum $b = 1$. The encoder used in our experiments was a convolutional neural network with residual connections and ReLU activations. Each read-out encoder is a linear layer with LeakyReLU activations. Lastly, the decoder architecture was again a neural network with transposed convolutions and also here residual layers. In the standard ECR experiments with iCSNs, $J = 3$, $Z = 512$, $Q = 128$, $K = 6$ for each $j \in [1, \ldots, J]$. $N = 128$ and τ was decreased every 1000 epochs with steps $[0.5, 0.1, 0.01, 0.001, 0.0001, 0.00001]$ over 8000 epochs in total. Notably, group normalization as proposed by Wu et al. [2] was applied after extracting the concept encodings via the read-out encoders (performed in collectedReadOutEncoders in Alg. 1).

Pseudo code can be found in Alg. 1 and Alg. 2.

1.2 Baseline models

For the experiments with Cat-VAE, the softmax temperature was set to $\tau = 0.1$ and each categorical distribution had $k = 6$ categories. The number of latent variables was set to 3 for Cat-VAE, β-VAE, Ada-VAE, and VAE runs. For all baselines, the encoder and decoder consisted of a convolutional and transposed convolutional network. In all experiments, $\beta = 4$, except for Ada-VAE, where $\beta = 1$, as recommended by Locatello et al. [1]. All baseline models were trained for 2000 epochs.

1.3 Linear probing

The linear models for probing the latent representations of the different model configurations were a decision tree and logistic regression model. The max depth of the decision tree was set to 8. The logistic regression model was run with parameters $C = 0.316$ and the maximum number of iterations at 1000. Both the decision tree and logistic regression model were trained with a fixed random seed.

2 Details on simulated interactions

The simulated user interactions were performed via an L_2 regulatory loss term on the latent codes y.

In case a user tells an iCSN not to use a specific prototype slot of the superordinate concept j and slot k, this loss corresponds to: $MSE(y_{j \cdot k + k}, 0)$, where $y_{j \cdot k + k}$ corresponds to the value of y at position $j \cdot k + k$ and 0 being a vector of length N.

When a user provides a subset of examples with corresponding desired prototype slot IDs the loss term corresponds to: $MSE(y_{j \cdot k + k}^{\text{subset}}, 1)$ with 1 of length equal to the number of samples in subset. The subset of examples in our simulated interactions were identified via the ground truth labels, e.g., for identifying the subset of images containing a pentagon. The interactions for learning a novel basic concept followed the same procedure.

To allow the model to update is latent space via interactions we increased $\tau = 0.00001$ back to $\tau = 0.0001$.

References

Algorithm 1: Interactive Concept Swapping Network – pair images forward pass

Input: Image pair \(x \in \mathbb{R}^D, x' \in \mathbb{R}^D \), known share IDs \(v \).

Output: Image reconstructions \(\hat{x} \in \mathbb{R}^D, \hat{x}' \in \mathbb{R}^D \), and latent codes \(y \in [0, 1]^{J \times K}, y' \in [0, 1]^{J \times K} \).

1 // Forward pass through initial encoder. \(z \in \mathbb{R}^Z \)
2 \(z \leftarrow f(x) \)
3 \(z' \leftarrow f(x') \)
4 // Forward pass through \(J \) read-out encoders. \(\phi \in \mathbb{R}^{J \times Q} \)
5 \(\phi \leftarrow \text{collectedReadOutEncoders}(z) \)
6 \(\phi' \leftarrow \text{collectedReadOutEncoders}(z') \)
7 // Compute the distance of each concept encoding to all prototype slots of its corresponding category \(j \).
8 \(y \leftarrow \text{computeProtoDistance}(\phi, v) \)
9 \(y' \leftarrow \text{computeProtoDistance}(\phi', v) \)
10 // Reconstruct the images from the prototype distance codes.
11 \(\hat{y} \leftarrow g(y) \)
12 \(\hat{y}' \leftarrow g(y') \)

Algorithm 2: computeProtoDistance

Input: Concept encodings \(\phi \in \mathbb{R}^{J \times Q}, \phi' \in \mathbb{R}^{J \times Q} \)

Given: Set of prototype slot codebooks \(\Theta := [P_1, ..., P_J] \in \mathbb{R}^{J \times Q \times K} \), softmax temperature \(\tau \), and share IDs \(v \).

Output: Latent codes \(y \in [0, 1]^{J \times K}, y' \in [0, 1]^{J \times K} \)

1 // For every superordinate concept category
2 for \(j \leftarrow 0 \) to \(J - 1 \) do
3 // Dot-product between concept encoding and all prototype slots from codebook \(P_j \).
4 \(s_j \leftarrow \text{softmaxDotProduct}(\phi_j, P_j) \)
5 \(s'_j \leftarrow \text{softmaxDotProduct}(\phi'_j, P_j) \)
6 // Compute normalizing weighted softmax.
7 \(\Pi_j \leftarrow \text{softmaxNormTau}(s_j, \tau) \)
8 \(\Pi'_j \leftarrow \text{softmaxNormTau}(s'_j, \tau) \)
9 end for
10 // Swap the distance codes at the position corresponding to the shared IDs.
11 \(y \leftarrow [\Pi_1, ..., \Pi'_v, ..., \Pi_J] \)
12 \(y' \leftarrow [\Pi'_1, ..., \Pi_v, ..., \Pi'_J] \)