
CRAFT: Cross-Attentional Flow Transformer for Robust Optical Flow
Appendix

1. Model Size and FLOPs

Table 1 presents the number of parameters and FLOPs of

RAFT, GMA and CRAFT. The “Ratio” columns take RAFT

as the base. FLOPs are measured while inference on Sintel

images (1024x436 pixels).

Similar to the SS Transformer and the Cross-Frame At-

tention, the GMA module in CRAFT is implemented with

Expanded Attention [4], which contains multiple modes.

In Table 1, two CRAFT models with different numbers of

GMA modes m are presented. These two models have

very similar overall performance (Table 3). When m = 2,

the model size is only 7% and 19% larger than GMA and

RAFT, respectively, and thus the performance gain is not to

be explained away as merely having more parameters.

Params

(M)
Ratio

FLOPs

(G)
Ratio

RAFT 5.3 1 369 1

GMA 5.9 1.11 494 1.34

CRAFTm=2 6.3 1.19 613 1.66

CRAFTm=4 6.3 1.19 794 2.15

Table 1. Number of parameters / FLOPs (on Sintel images). m of

CRAFT denotes the number of modes in the GMA module.

As shown in Table 2, the GMA module dominates the

total overhead of the three transformer modules. This dras-

tic difference is because the GMA module is applied in ev-

ery iteration of the iterative motion refinement [7], while

the other two are only applied once. In this regard, for the

FLOPs computation above, we fixed SS Trans and CFA to

have 4 modes, and only varied the number of modes of the

GMA module.

SS Trans CFA GMA Remaining

FLOPs (G) 66 6.6 317 405

Table 2. FLOPs (on Sintel images) of different components in

CRAFTm=4. SS Trans, CFA and GMA all have 4 modes.

2. Image Shifting as Augmentation
To explore how manually shifting some training images

impacts the model performance, we take it as an extra aug-

mentation, namely “ShiftAug”, for the training of optical

flow models.

2.1. Mild ShiftAug

In the mild ShiftAug training, 10% of the training

batches are shifted by (Δu,Δv) sampled from two Lapla-

cian distributions with scales 16 and 10 (the mean value of

a Laplacian distribution is the scale1), respectively.

We trained two GMA models and two CRAFTm=2 mod-

els, with and without ShiftAug, respectively. They are de-

noted as GMA, GMA-shift, CRAFT and CRAFT-shift.

2.1.1 Leaderboard Evaluation

Table 3 presents the performance scores of the two

CRAFTm=2 models (with or without ShiftAug), along with

the standard CRAFTm=4 (without ShiftAug), on Sintel and

KITTI leaderboards.

Without ShiftAug, when m reduces from 4 to 2, the per-

formance on large motions (“s40+” for Sintel, and “Fl-fg”

for KITTI) degrades slightly. As expected, ShiftAug re-

covers the model performance on large motions on Sintel

(Clean) and KITTI. However, it is surprising to see that with

ShiftAug, the performance on large motions on Sintel (Fi-

nal) degrades slightly.

Due to the restricted frequency of submissions to the

leaderboards, we were unable to evaluate more model set-

tings before the camera ready deadline, such as CRAFTm=4

and GMA trained with ShiftAug.

2.1.2 Performance under Image Shifting Attack

We evaluated the 4 models under the image shifting at-

tack, to study whether ShiftAug makes models more robust

against it. Figure 1 presents the performance of of the four

models, evaluated on the training split of Sintel (Clean) and

Sintel (Final), under varying (Δu,Δv). The horizontal shift

Δu ∈ [100, 300], and the vertical shift Δv
.
= 1

2Δu.

1https://en.wikipedia.org/wiki/Laplace distribution
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Settings
Sintel KITTI

All

Clean

s10-40 s40+ All

Final

s10-40 s40+

Fl-bg

(%)

Fl-fg

(%)

Fl-all

(%)

CRAFTm=4 1.45 0.97 8.30 2.43 1.74 13.27 4.58 5.85 4.79

CRAFTm=2 1.44 0.99 8.13 2.42 1.62 13.66 4.30 6.87 4.73

CRAFT-shiftm=2 1.40 0.96 7.84 2.51 1.73 14.02 4.35 6.35 4.68

Table 3. Additional results on Sintel and KITTI 2015 leaderboards. We report the average end-point error (AEPE) for Sintel, and the

Fl-bg, Fl-fg and Fl-all metrics for KITTI, which are the percentages of optical flow outliers (pixels with significant flow errors), calculated

on the foreground regions and all pixels, respectively. To show the performance on large motions, we present the AEPE on s10-40 and

s40+, i.e., pixels whose velocities are within [10, 40] pixels, and > 40 pixels, respectively.
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Figure 1. The AEPE of RAFT, GMA and CRAFT change differently with the magnitude of image shifts. (a)-(c) are on Sintel (Clean),

Sintel (Final) and Slow Flow, respectively. The horizontal shift Δu change from 100 to 300, and the vertical shift Δv
.
= 1

2
Δu. When Δu

goes beyond 160, RAFT and GMA quickly deteriorate, and CRAFT performs much more robustly.

It can be seen that, under the image shifting attack,

GMA-shift and CRAFT-shift follow similar performance

curves as GMA and CRAFT, respectively. On both Sintel

(Clean) and Sintel (Final), CRAFT-shift yields significant

smaller AEPE (20-50%) on very large shifts (≥ 200 pix-

els). However, on Sintel (Final), GMA-shift yields almost

identical AEPE on very large shifts as GMA. Bewilderingly,

on Sintel (Clean), the AEPE of GMA-shift becomes signifi-

cantly higher on very large shifts than GMA. ShiftAug helps

both GMA and CRAFT reduce AEPE on medium-to-large

shifts (120-180 pixels). Without ShiftAug, the maximum

AEPE in this range is 3.4 pixels.

Based on the observations above, we conclude that mild

ShiftAug does not help make GMA more robust against

very large image shifts. On the other hand, mild Shif-

tAug already helps make CRAFT significantly more robust

against very large image shifts.

2.2. Aggressive ShiftAug against Image Shifting

In this section, we aim to test the effects of more ag-

gressive ShiftAug, i.e., with a probability of 10%, shift

frame 1 by (Δx,Δy), where Δx is uniformly drawn from

[−320, 320], and Δy is uniformly drawn from [−160, 160].

Δx (px) 0 240 280 320 360 400

GMA 1.19 120.2 270.2 362.7 427.9 478.1

CRAFT 1.11 10.8 51.8 138.4 236.5 336.9

GMA-shift 1.21 1.83 3.11 9.33 47.5 124.3

CRAFT-shift 1.13 1.59 1.74 2.15 6.73 32.0
Table 4. AEPE on Chairs under image shifting attack.

We fine-tuned CRAFT and GMA on Things models (pre-

trained on C+T) with such random shifting. Then we evalu-

ated the two models on Chairs2 with varying degree of shift-

ing. GMA-shift becomes more robust against image shift-

ing attack, but CRAFT-shift still outperforms GMA-shift

with a large margin on larger shifts.

2.3. Innate and Acquired Robustness

Based on the observations in Section 2.1 and 2.2, we

hypothesize that there are two types of model robustness

– innate and acquired robustness. The latter is learned

2We intentionally chose Chairs for evaluation, which has a slight do-

main gap with Things (used for training), to see how the robustness gener-

alizes.
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through augmentation, but stronger innate robustness of

CRAFT makes it robust to variations beyond the training

data. Hence, CRAFT is likely more robust against other un-

seen image variations as well, e.g., rotations, lighting varia-

tions and motion blur.

3. Iterative Motion Refinement on Shifted
Slow-Flow Images

Figure 2 presents the flow fields estimated at different it-

erations by GMA and CRAFT (both without shift augmen-

tation), respectively, on the same Slow Flow [3] image pair

as in Figure 4 of the main text. It partially explains why the

AEPE (average end-point error) of GMA is huge when the

image shift is large (Figure 5 in the main text).

The flow field is estimated through iterative refinement

of N = 12 iterations in both GMA and CRAFT. At the

i + 1-th iteration, it uses the flow estimated at the i-th iter-

ation as initialization, and attempts to estimate a more ac-

curate flow field. This is effective when the flow errors are

confined in very small areas, in which cases the model can

correct the errors by considering the estimated motions of

the surrounding pixels (which are largely accurate). How-

ever, if large errors appear in broader areas, the model may

fail to recover from the errors with more iterations. There-

fore, a relatively small AEPE at the first iteration is crucial

for achieving a small AEPE after all iterations. In Figure

2, the flow estimated by GMA at the first iteration has huge

errors (AEPE = 253.8), and thus even with more iterations,

GMA is unable to recover. In contrast, the flow estimated

by CRAFT at the first iteration has a much smaller AEPE =

113.8, and CRAFT quickly corrects the errors.

4. Visualization of Correlation Volumes on
Slow Flow

Figures 3-5 present more visualizations of the correla-

tion volume. Figure 3 visualizes the correlation volume of

RAFT, GMA and CRAFT on the shifted image pair from

Slow Flow. This is the same example as in Figure 2, and

Figure 4 in the main text. It can be seen that, GMA has the

most spurious high correlations, and CRAFT has the least.

Figures 4 and 5 visualize the correlation volumes with

two different query points in Frame 1, on the rider’s body,

and on the horse’s tail, respectively, on the original image

pair from Slow Flow. Similar distributions of spurious high

correlations are observed. Among the four models, CRAFT

(with SS trans) always has the least spurious high correla-

tions, showing that it is able to greatly suppress spurious

correlations and compute a more accurate correlation vol-

ume, which may explain its robustness demonstrated in Fig-

ure 2.

5. Screenshots of Sintel and KITTI Leader-
boards

Figures 6-8 are the screenshots of the Sintel (Final), Sin-

tel (Clean) and the KITTI-2015 optical flow leaderboards,

which were taken near the CVPR’2022 submission dead-

line.

CRAFT ranked the 1st and 5th places on Sintel (Final

pass), Sintel (Clean pass), respectively. As Sintel (Final

pass) images contain more light variations, shadows, mo-

tion blurs, etc. that are common in real world, we argue

that the performance on Sintel (Final) better reflects the per-

formance of a model on real-world images. Evidence has

been presented in the Sintel paper (Figure 5, [2]) that Sin-

tel (Final) has similar image and motion statistics as other

real-world datasets, including Lookalikes [2] and Middle-

bury [1].

On the KITTI flow-2015 leaderboard, a few meth-

ods among the top are scene flow methods (marked with

strikethrough text) that take two stereo pairs of images as

input (cf. two monocular images of optical flow), and thus

are not comparable with optical flow methods. Among the

top optical flow methods, CRAFT ranks 5th. In particu-

lar, it achieves the highest accuracy on foreground regions,

measured as the smallest Fl-fg (percentage of flow outliers3

in the foreground regions). On Fl-all (percentage of flow

outliers in both foreground and background regions), Mix-

Sup ranks as the top-1 optical flow method, but its training

and implementation details are missing for further analy-

sis and comparison with CRAFT. Separable Flow [8] and

RFPM [5] have significantly worse performance on fore-

ground regions. RAFT-A uses Autoflow [6] as the pretrain-

ing data, and thus not directly comparable with CRAFT.

Autoflow explore a new way to synthesise training data,

which is orthogonal to our method or other recent archi-

tectures. It is worth noting that, the foreground objects in

KITTI are usually cars, pedestrians, etc., which naturally

are more important than the background. Thus, smaller Fl-

fg are probably more important for practical applications

than smaller Fl-bg or Fl-all.

3Pixels whose end-point error is > 3 pixels or 5% of the ground truth

flow magnitude.
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Figure 2. The iterative refinement of optical flow on the shifted Slow Flow image pair (Figure 4 in the main text), by GMA and CRAFT,

respectively. As in the first iteration, GMA makes excessively huge errors, it is unable to recover with more iterations. CRAFT recovers

from smaller initial errors and yields an accurate flow field eventually.

Frame 1

GMA CRAFT

RAFTFrame 2

CRAFT (no SS trans)

Figure 3. Heatmaps of the correlation matrices between Frame 2 and a query point on the rider’s body in a shifted Frame 1, on the

Slow Flow dataset. At the presence of motion blur, CRAFT has significantly fewer noisy correlations than RAFT and GMA, showing its

robustness. Removing SS transformer results in more noisy correlations.
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Frame 1

GMA CRAFT

RAFTFrame 2

CRAFT (no SS trans)

Figure 4. Heatmaps of the correlation matrices between Frame 2 and a query point on the rider’s body in Frame 1, on Slow Flow.

Frame 1

GMA CRAFT

RAFTFrame 2

CRAFT (no SS trans)

Figure 5. Heatmaps of the correlation matrices between Frame 2 and a query point on the horse’s tail in Frame 1, on the Slow Flow dataset.
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Figure 6. Screenshot of Sintel (Final) leaderboard, taken near the CVPR’2022 submission deadline.
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Figure 7. Screenshot of Sintel (Clean) leaderboard, taken near the CVPR’2022 submission deadline.
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Figure 8. Screenshot of KITT-2015 leaderboard, taken near the CVPR’2022 submission deadline. Five scene flow methods are marked with

strikethrough text, as they are not comparable to optical flow methods. There remain the top 19 optical flow methods. “CRAFT-noca” and

“CRAFT-nof2” are the ablated models of removing the Cross-Frame Attention, and the Semantic Smoothing Transformer from CRAFT,

respectively.
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