CRAFT: Cross-Attentional Flow Transformer for Robust Optical Flow
Appendix

1. Model Size and FLOPs

Table 1 presents the number of parameters and FLOPs of
RAFT, GMA and CRAFT. The “Ratio” columns take RAFT
as the base. FLOPs are measured while inference on Sintel
images (1024x436 pixels).

Similar to the SS Transformer and the Cross-Frame At-
tention, the GMA module in CRAFT is implemented with
Expanded Attention [4], which contains multiple modes.
In Table 1, two CRAFT models with different numbers of
GMA modes m are presented. These two models have
very similar overall performance (Table 3). When m = 2,
the model size is only 7% and 19% larger than GMA and
RAFT, respectively, and thus the performance gain is not to
be explained away as merely having more parameters.

Pagzj[r)ns Ratio Flzg)l) s Ratio
RAFT 53 1 369 1
GMA 5.9 1.11 494 1.34
CRAFT,,,—2 6.3 1.19 613 1.66
CRAFT,,,—4 6.3 1.19 794 2.15

Table 1. Number of parameters / FLOPs (on Sintel images). m of
CRAFT denotes the number of modes in the GMA module.

As shown in Table 2, the GMA module dominates the
total overhead of the three transformer modules. This dras-
tic difference is because the GMA module is applied in ev-
ery iteration of the iterative motion refinement [7], while
the other two are only applied once. In this regard, for the
FLOPs computation above, we fixed SS Trans and CFA to
have 4 modes, and only varied the number of modes of the
GMA module.

SS Trans | CFA | GMA | Remaining
FLOPs (G) 66 6.6 317 405

Table 2. FLOPs (on Sintel images) of different components in
CRAFT,,—4. SS Trans, CFA and GMA all have 4 modes.

2. Image Shifting as Augmentation

To explore how manually shifting some training images
impacts the model performance, we take it as an extra aug-
mentation, namely “ShiftAug”, for the training of optical
flow models.

2.1. Mild ShiftAug

In the mild ShiftAug training, 10% of the training
batches are shifted by (Awu, Av) sampled from two Lapla-
cian distributions with scales 16 and 10 (the mean value of
a Laplacian distribution is the scale'), respectively.

We trained two GMA models and two CRAFT,,,—> mod-
els, with and without ShiftAug, respectively. They are de-
noted as GMA, GMA-shift, CRAFT and CRAFT-shift.

2.1.1 Leaderboard Evaluation

Table 3 presents the performance scores of the two
CRAFT,,,—» models (with or without ShiftAug), along with
the standard CRAFT,,,—4 (without ShiftAug), on Sintel and
KITTT leaderboards.

Without ShiftAug, when m reduces from 4 to 2, the per-
formance on large motions (“s40+” for Sintel, and “Fl-fg”
for KITTI) degrades slightly. As expected, ShiftAug re-
covers the model performance on large motions on Sintel
(Clean) and KITTI. However, it is surprising to see that with
ShiftAug, the performance on large motions on Sintel (Fi-
nal) degrades slightly.

Due to the restricted frequency of submissions to the
leaderboards, we were unable to evaluate more model set-
tings before the camera ready deadline, such as CRAFT,,,—4
and GMA trained with ShiftAug.

2.1.2 Performance under Image Shifting Attack

We evaluated the 4 models under the image shifting at-
tack, to study whether ShiftAug makes models more robust
against it. Figure 1 presents the performance of of the four
models, evaluated on the training split of Sintel (Clean) and
Sintel (Final), under varying (Aw, Av). The horizontal shift
Aw € [100, 300], and the vertical shift Av = %Au.

Thttps://en.wikipedia.org/wiki/Laplace_distribution



Settings Sintel ' KITTI
Clean Final Fl-bg Fl-fg Fl-all
All s10-40 s40+ All s10-40 s40+ (%) (%) (%)
CRAFT,,,—4 1.45 0.97 8.30 243 1.74 13.27 4.58 5.85 4.79
CRAFT,,—2 1.44 0.99 8.13 2.42 1.62 13.66 4.30 6.87 4.73
CRAFT-shift,,—o 1.40 0.96 7.84 2.51 1.73 14.02 4.35 6.35 4.68

Table 3. Additional results on Sintel and KITTI 2015 leaderboards. We report the average end-point error (AEPE) for Sintel, and the
Fl-bg, Fl-fg and Fl-all metrics for KITTI, which are the percentages of optical flow outliers (pixels with significant flow errors), calculated
on the foreground regions and all pixels, respectively. To show the performance on large motions, we present the AEPE on s10-40 and
s40+, i.e., pixels whose velocities are within [10, 40] pixels, and > 40 pixels, respectively.
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Figure 1. The AEPE of RAFT, GMA and CRAFT change differently with the magnitude of image shifts. (a)-(c) are on Sintel (Clean),
Sintel (Final) and Slow Flow, respectively. The horizontal shift A change from 100 to 300, and the vertical shift Av = %Au. When Au
goes beyond 160, RAFT and GMA quickly deteriorate, and CRAFT performs much more robustly.

It can be seen that, under the image shifting attack, Az (px) 0 240 280 320 360 400
GMA-shift and CRAFT-shift follow similar performance GMA 1.19 120.2 270.2 362.7 427.9 478.1
curves as GMA and CRAFT, respectively. On both Sintel CRAFT 1.11 10.8 51.8 138.4 236.5 336.9

GMA-shift  1.21 1.83 3.11 9.33 475 1243
CRAFT-shift 1.13 1.59 1.74 215 6.73 32.0

(Clean) and Sintel (Final), CRAFT-shift yields significant
smaller AEPE (20-50%) on very large shifts (> 200 pix-

els). However, on Sintel (Final), GMA-shift yields almost
identical AEPE on very large shifts as GMA. Bewilderingly,
on Sintel (Clean), the AEPE of GMA-shift becomes signifi-
cantly higher on very large shifts than GMA. ShiftAug helps
both GMA and CRAFT reduce AEPE on medium-to-large
shifts (120-180 pixels). Without ShiftAug, the maximum

Table 4. AEPE on Chairs under image shifting attack.

We fine-tuned CRAFT and GMA on Things models (pre-
trained on C+T) with such random shifting. Then we evalu-

AEPE in this range is 3.4 pixels.

Based on the observations above, we conclude that mild
ShiftAug does not help make GMA more robust against
very large image shifts. On the other hand, mild Shif-
tAug already helps make CRAFT significantly more robust
against very large image shifts.

2.2. Aggressive ShiftAug against Image Shifting

In this section, we aim to test the effects of more ag-
gressive ShiftAug, i.e., with a probability of 10%, shift
frame 1 by (Axz, Ay), where Az is uniformly drawn from
[—320, 320], and Ay is uniformly drawn from [—160, 160].

ated the two models on Chairs” with varying degree of shift-
ing. GMA-shift becomes more robust against image shift-
ing attack, but CRAFT-shift still outperforms GMA-shift
with a large margin on larger shifts.

2.3. Innate and Acquired Robustness

Based on the observations in Section 2.1 and 2.2, we
hypothesize that there are two types of model robustness
— innate and acquired robustness. The latter is learned

2We intentionally chose Chairs for evaluation, which has a slight do-
main gap with Things (used for training), to see how the robustness gener-
alizes.



through augmentation, but stronger innate robustness of
CRAFT makes it robust to variations beyond the training
data. Hence, CRAFT is likely more robust against other un-
seen image variations as well, e.g., rotations, lighting varia-
tions and motion blur.

3. Iterative Motion Refinement on Shifted
Slow-Flow Images

Figure 2 presents the flow fields estimated at different it-
erations by GMA and CRAFT (both without shift augmen-
tation), respectively, on the same Slow Flow [3] image pair
as in Figure 4 of the main text. It partially explains why the
AEPE (average end-point error) of GMA is huge when the
image shift is large (Figure 5 in the main text).

The flow field is estimated through iterative refinement
of N = 12 iterations in both GMA and CRAFT. At the
i 4 1-th iteration, it uses the flow estimated at the i-th iter-
ation as initialization, and attempts to estimate a more ac-
curate flow field. This is effective when the flow errors are
confined in very small areas, in which cases the model can
correct the errors by considering the estimated motions of
the surrounding pixels (which are largely accurate). How-
ever, if large errors appear in broader areas, the model may
fail to recover from the errors with more iterations. There-
fore, a relatively small AEPE at the first iteration is crucial
for achieving a small AEPE after all iterations. In Figure
2, the flow estimated by GMA at the first iteration has huge
errors (AEPE = 253.8), and thus even with more iterations,
GMA is unable to recover. In contrast, the flow estimated
by CRAFT at the first iteration has a much smaller AEPE =
113.8, and CRAFT quickly corrects the errors.

4. Visualization of Correlation Volumes on
Slow Flow

Figures 3-5 present more visualizations of the correla-
tion volume. Figure 3 visualizes the correlation volume of
RAFT, GMA and CRAFT on the shifted image pair from
Slow Flow. This is the same example as in Figure 2, and
Figure 4 in the main text. It can be seen that, GMA has the
most spurious high correlations, and CRAFT has the least.

Figures 4 and 5 visualize the correlation volumes with
two different query points in Frame 1, on the rider’s body,
and on the horse’s tail, respectively, on the original image
pair from Slow Flow. Similar distributions of spurious high
correlations are observed. Among the four models, CRAFT
(with SS trans) always has the least spurious high correla-
tions, showing that it is able to greatly suppress spurious
correlations and compute a more accurate correlation vol-
ume, which may explain its robustness demonstrated in Fig-
ure 2.

5. Screenshots of Sintel and KITTI Leader-
boards

Figures 6-8 are the screenshots of the Sintel (Final), Sin-
tel (Clean) and the KITTI-2015 optical flow leaderboards,
which were taken near the CVPR’2022 submission dead-
line.

CRAFT ranked the 1st and 5th places on Sintel (Final
pass), Sintel (Clean pass), respectively. As Sintel (Final
pass) images contain more light variations, shadows, mo-
tion blurs, etc. that are common in real world, we argue
that the performance on Sintel (Final) better reflects the per-
formance of a model on real-world images. Evidence has
been presented in the Sintel paper (Figure 5, [2]) that Sin-
tel (Final) has similar image and motion statistics as other
real-world datasets, including Lookalikes [2] and Middle-
bury [1].

On the KITTI flow-2015 leaderboard, a few meth-
ods among the top are scene flow methods (marked with
strikethroughtext) that take two stereo pairs of images as
input (cf. two monocular images of optical flow), and thus
are not comparable with optical flow methods. Among the
top optical flow methods, CRAFT ranks 5th. In particu-
lar, it achieves the highest accuracy on foreground regions,
measured as the smallest FI-fg (percentage of flow outliers®
in the foreground regions). On Fl-all (percentage of flow
outliers in both foreground and background regions), Mix-
Sup ranks as the top-1 optical flow method, but its training
and implementation details are missing for further analy-
sis and comparison with CRAFT. Separable Flow [8] and
RFPM [5] have significantly worse performance on fore-
ground regions. RAFT-A uses Autoflow [0] as the pretrain-
ing data, and thus not directly comparable with CRAFT.
Autoflow explore a new way to synthesise training data,
which is orthogonal to our method or other recent archi-
tectures. It is worth noting that, the foreground objects in
KITTI are usually cars, pedestrians, etc., which naturally
are more important than the background. Thus, smaller FI-
fg are probably more important for practical applications
than smaller Fl-bg or Fl-all.

3Pixels whose end-point error is > 3 pixels or 5% of the ground truth
flow magnitude.
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(c) CRAFT AEPE changes with iterations

Figure 2. The iterative refinement of optical flow on the shifted Slow Flow image pair (Figure 4 in the main text), by GMA and CRAFT,
respectively. As in the first iteration, GMA makes excessively huge errors, it is unable to recover with more iterations. CRAFT recovers
from smaller initial errors and yields an accurate flow field eventually.

Frame 1 Frame 2 RAFT

GMA CRAFT (no SS trans) CRAFT

Figure 3. Heatmaps of the correlation matrices between Frame 2 and a query point on the rider’s body in a shifted Frame 1, on the
Slow Flow dataset. At the presence of motion blur, CRAFT has significantly fewer noisy correlations than RAFT and GMA, showing its
robustness. Removing SS transformer results in more noisy correlations.



Frame 1 Frame 2 RAFT

GMA CRAFT (no SS trans) CRAFT

Figure 4. Heatmaps of the correlation matrices between Frame 2 and a query point on the rider’s body in Frame 1, on Slow Flow.

Frame 1

GMA CRAFT (no SS trans) CRAFT

Figure 5. Heatmaps of the correlation matrices between Frame 2 and a query point on the horse’s tail in Frame 1, on the Slow Flow dataset.



Final = Clean

EPEall  EPE matched EPE unmatched do-10 d10-60  d60-140  s0-10 s10-40  s40+
GroundTruth ! 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2424 1169 12 671 2944 1033 0510 0572 1744 13266
GMA Pl 2470 1.241 12.501 2.863 1.057 0653 0.566 1817 13.492
MixSup 2574 1243 13435 2830 1045 0667 0578 1701 14 504
GMFlowNet 5] 2648 1.271 13.882 2818 1.050 0778 0.699 1784 14.417
AGF-Flow 2651 1275 13853 2 605 0877 0828 0612 1520 15489
SeparableFlow [ 2687 1.275 14.013 2937 1.056 0620 0.580 1738 15269
RAFT+NCUP & 2692 1323 13 854 3139 1086 0636 0635 1844 14949
L2L-Flow-ext-warm %] 2780 1319 14 697 3098 1145 0637 0656 1879 15502
LCT-Flow2 [ 2781 1.349 14.465 2.720 0.989 0.895 0.620 1582 16.405
MFR [11] 2801 1.380 14385 3075 1112 0772 0674 1829 15703 " Visualize Results |
RAFTwarm+AOIR ['2] 2813 1.371 14.565 3.088 1.099 0.727 0.603 1781 16.271
RAFTwarm+0BS I3 2826 1.356 14.809 3134 1116 0735 0631 1832 16.117
RAFTv2-OER-warm-start |4 2831 1.396 14.536 3.108 1133 0.742 0.628 1798 16.259
RAFTIS] 2855 1.405 14 680 3112 1133 0770 0634 1823 16 371
Deformable_RAFT [l 2.874 1.386 15.009 3.118 1.201 0.766 0.636 1.949 16.212
RFPM[17] 2901 1331 15698 2732 1063 081 0535 1602 17 779
L2L-Flow-ext ['¥ 2.954 1.392 15.684 3.059 1.158 0.822 0.649 1.823 17.125 Visualize Results

Figure 6. Screenshot of Sintel (Final) leaderboard, taken near the CVPR’2022 submission deadline.



Final Clean

EPEall  EPE matched EPE unmatched do-10 d10-60  d60-140  s0-10 s10-40 sS40+
GroundTruth [ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GMA [ 1388 0582 7963 1537 0461 0278 0331 0963 7662
GMFlowNet [ 1390 0520 8426 1275 0395 0293 0314 0991 7698
RFPM 41 1411 0494 8884 1335 0400 0221 0273 0879 8345
Mix Sup (! 1.419 0.541 8574 1.455 0.442 0.242 0.301 0.940 8.118

1453 0589 8501 1565 0490 0257 0312 0966 8295
SeparableFlow [} 1.496 0.567 9.075 1.474 0.481 0.257 0.309 0.958 8.691
RAF Twarm+AOIR & 1544 0551 9656 1515 0412 0280 0279 0941 9290
MFR [ 1.545 0.593 9.295 1.536 0477 0.299 0.348 1023 8.736
CosTR 10 1.545 0.519 9.908 1.293 0.403 0.261 0.321 0.917 0136
RAFTwarm+0Bs ['1] 1593 0.600 9.692 1.532 0.507 0.309 0.300 0.989 9.470
RAFTv2-OER-warm-start [12] 1.594 0.625 9.487 1.567 0512 0.329 0.328 1.014 9.271
comso ! 1.604 0.569 10.046 1455 0468 0.302 0318 1.013 9.422
RAFT 14 1.609 0622 9.647 1.621 0518 0.301 0.341 1.036 9.288
NASFlow-RAFT [15] 1613 0503 10 664 1339 0405 0238 0298 0892 9883
L2L-Flow-ext-warm [1°] 1.648 0.622 10.017 1.641 0516 0.282 0.342 1.018 0.657
RAFT+NCUP [17] 1661 0678 9 666 1872 0541 0302 0371 1102 9.402
MF2c (181 1.664 0.689 9.612 1.663 0.596 0.372 0.348 1.060 9.651

Figure 7. Screenshot of Sintel (Clean) leaderboard, taken near the CVPR’2022 submission deadline.



Evaluation ground truth ‘ All pixels v ‘ Evaluation area | All pixels v
Method Setting | Code | Fl-bg Fl-fg Fl-all Density Runtime Environment I Compare ]

1 - Camliflew ------ 2.38% 7.35%  3.21% 100.00% 1s GPU @ 2.5 Ghz (Python + C/C++) O
2 --- RigidMaskHSF-----  code  2.63%  7.85% 3.50% 100.00% | 335 GPU @ 2.5 Ghz (Python) O

339% 3?9"» . 4.29%  100.00 % 2s GPU @ 2.5 Ghz (Python + C/C++) il
4 - 1, T | 3.18% 9.92% 431% 100.00% . 60s 1 core @ 2.5 Ghz (C/C++) 0
5 MixSup 3.99% 6.01%  4.33% 100.00% .  0.2s 1 core @ 2.5 Ghz (Python) 0
6 SeparableFlow 432% 6.24%  4.64% 100.00% 0.25s GPU O

F. Zhang, O. Woodford, V. Prisacariu and P Torr: Separable Flow: Learning Motion Cost Vulume; for Optical Flow Estlmatlun Proceedmgs of the IEEE/CVF International Conference on Computer Vision 2021.

K. --UberATG-DRISE---- | 6 359% 10.40% 4.73% 100.00%  0.75s CPU+GPU @ 2.5 Ghz (Python) O

W. Ma, 5. Wang, R. Hu, Y. Xiong and R. Urtasun: Deep Ri: R1g1d Instance Scene Flow. CVPR 2019

|8 RAFTA code 454%  5.99%  478% 100.00% 075 |  GPU®2.5 Ghz (Python + C/C++) D

D. Sun, D. Vlasic, C. Herrmann, V. Jampanl M. Krainin, H. Chang, R. Zabih, W. Freeman and C. Liu: AutoFlow: LeammgaBetterTrammg Set for Optical Flow. CVPR 2021.

9 REPM code  450%  6.20%  479% 100.00% 0.2 GPU @ 2.5 Ghz (Python) O
10 [ crarr  458% |5.85%| 479% 100.00% @ 0.1s GPU @ 2.5 Ghz (Python) 0
i AGFlow 452% 6.75% 4.89% 100.00% |  0.2s 8 cores @ 2.5 Ghz (Python) O

12 L2L-Flow | 4.48% 6.96% 4.89%  100.00% 0.2s GPU @ 2.5 Ghz (Python) 8]

P13 CRAFT-noca 465% 6.15% | 4.90% 100.00% 015 1 core @ 2.5 Ghz (Python) O

4 Raft bl 450% 6.87% 4.90% 100.00% is 1 core @ 2.5 Ghz (Python) O

P15 RAFT+0BS 749% 0 491% 100.00% 0.2s GPU @ 2.5 Ghz (Python) |

16 GMA p 458% 6.71% | 493% 100.00% 025 GPU @ 2.5 Ghz (Python + C/C++) [

17 RAFTv2-OER [ 472%  6.66% | 5.04%  100.00% i 0.1541s NVIDIA 2080Ti (Python) ]

18 CRAFT-nof? 4.80% 6.41%  5.06% 100.00% 055 1 core @ 2.5 Ghz (Python) ]

19 RAFT+AOIR 4.68% 6.99% | 5.07% 100.00% | 105 GPU @ 2.5 Ghz (Python + C/C#+) O

L. Mehl, C. Beschle, A. Barth and A. Bruhn: AnAmSDtr[)| ic SE{ECt]Dn Scheme for Variational Optical Flow Methods w‘lth Order-Adaptive Regularisation. SSVM 2021.

20 GMA (p+c) 481% 6.45%  5.08% 100.00% 025 i GPU @ 2.5 Ghz (Python) O

21 GMA-FER s 23 L477% 6.70% 5.09%  100.00% 0.25 1 core @ 2.5 Ghz (Python) 0

) RAFT  code 474% 6.87% 5.10% 100.00% 025 GPU @ 2.5 Ghz (Python) O

Z. Teed and J. Deng: RAFT: Recurrent All-Pairs Field Transforms for Optical Flow. ECCV 2020.

V] RAFT+NCUP : 478% 6.93% | 5.14%  100.00% |  0.2s GPU @ 2.5 Ghz (Python) |

24 GMA [478% 7.03% 5.15%  100.00% | 025 GPU @ 2.5 Ghz (Python) O

Figure 8. Screenshot of KITT-2015 leaderboard, taken near the CVPR’2022 submission deadline. Five scene flow methods are marked with
strikethrough-text, as they are not comparable to optical flow methods. There remain the top 19 optical flow methods. “CRAFT-noca” and
“CRAFT-nof2” are the ablated models of removing the Cross-Frame Attention, and the Semantic Smoothing Transformer from CRAFT,

respectively.
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