Appendix to “Salvage of Supervision in Weakly Supervised Object Detection”

A.1. Introducing the pipeline of OICR

In this part, we will introduce the details of OICR [14],
a widely used framework in WSOD. OICR is composed of
two parts, a multiple instance detection network (MIDN)
and several online instance classifier refinement (OICR)
branches. There are different choices to implement the
MIDN part. WSDDN [2], the first work to integrate the
MIL process into an end-to-end detection model, is the
most commonly used one. As for the OICR branch, orig-
inally it only contained one classifier and a softmax func-
tion. [15] started to introduce the bounding box regressor
into OICR branches, which was proved to be effective in
many works [8, 11,16, 17].

Specifically, we denote I € R"**“*3 as an RGB im-
age, ¥y = [y1,¥2,...,yc] € [0,1]¢ as its correspond-
ing groundtruth class labels, and R € R**¥ as the pre-
computed object proposals. C'is the total number of object
categories and N is the number of proposals. With the help
of a pre-trained backbone model, we can extract the feature
map for I, and proposal feature vectors are extracted by an
Rol pooling layer and two FC layers. Following WSDDN,
proposal feature vectors are branched into two streams to
produce classification logits ¢ € R“*" and detection log-
its 2 € RE*Y. Then 2¢ and x? will be normalized by
passing through two softmax layers along the category di-
rection and the proposal direction, respectively, as shown in
Equation 1. [o0(x)];; represents the probability of proposal
j belonging to class i and [o(z?)];; represents the likeli-
hood of proposal j to contain an informative part of class 7
among all proposals in image I.
z¢. zd
B exp”ii _ exp’i

chz1 eprij , Ziv:1 eXpIg’C ‘

1
The final proposal scores of a multiple instance detection
network are computed by element-wise product: z? =
o(z¢) ® o(x?). During the training process, image score
of the c'* category ¢, can be obtained by summing over all
proposals: ¢, = Zi,\;l xZ . Then the MIL classification
loss is calculated by Equation 2.
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As to the online instance classifier refinement (OICR)
branches, they are added on top of MIDN, i.e., WSDDN
here. Proposal feature vectors are fed into another K re-
finement stages and to generate classification logits z* €
RE+DXN | ¢ {1,2,...,K}. The k" branch is super-
vised by pseudo labels y* € [0, 1](“+D*N which are gen-
erated by top-score proposals of each category from the pre-
vious branch. One proposal will be encouraged to be clas-
sified as the c-th class only if it has high overlap with any
top-score proposal of the previous OICR branch. The loss
for the classifier of the k" branch is defined as Equation 3,
where w” is the loss weight of proposal r:
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The loss for bounding box regressor of the k** OICR
branch is defined as Equation 4, N, is the number of pos-
itive proposals in the k" branch, \,., is a scalar weight
of the regression loss, t¥, ff are the predicted and pseudo
groundtruth offsets of the r*" positive proposal in the k'

branch, respectively:
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A.2. Details of our improved OICR

In this part, we provide details of our improved
OICR [14], which is used in stage 1. As we claimed in
Sec. 3.1, we proposed an improved OICR as the baseline in
our main experiments.

Mining Rules. Recent works [9, 11, 13, 16] demonstrate
that better mining rules are critical in obtaining higher recall
of objects. OICR mines proposals that have high overlap
with top-scoring proposals. MIST [! |] mines more propos-
als with low overlap between each other but mines many
wrong proposals, too. We notice that recall and precision
are both essential for mining proposals. Hence, we intro-
duce a mining rule (Algorithm A.1) to strike a balance be-
tween the two factors. In Line 6, the rule to only retain the
top p percent of proposals is learned from MIST, but we
remove low score proposals to keep the precision.

Multi-Input. A very recent paper CASD [8] showed
that the self-attention transfer between different versions



of an input image is beneficial for boosting performance
in WSOD. We find that adopting the multi-input tech-
nique alone is also helpful for performance and stability
of the training process even without using inverted atten-
tion, CASD’s self-attention transfer and other tricks. We
randomly select inputs with two different scales and their
flipped versions, feed them into the model to obtain Rol
scores for different inputs, and average the scores of each
proposal to get the final Rol scores.

Algorithm A.1 Mining Rules in SoS-WSOD

Input: An input image I, class labels y1, ...,y that
are active in I, a set of proposals R with size n, maxi-
mum percent p, score threshold s,
Output: Pseudo groundtruth seed boxes Rfor I
1: R =g
2:  Feed I and R into the model to obtain Rol scores .S
for each proposal in R
fori=1, ..., mdo
S; = S[i,:]  / get scores for the i-th active class
R; = SORTEDg,(R) // sort the proposals ac-
cording to the scores in S;
6: Pick top n x p proposals, but remove those whose
scores are low (< s;). Denote them as R,
7: R} = NMS(R},0.01) // remove those proposals
having overlap with higher scored ones
R=RUR,
9:  end for

%

A.3. Implementation Details

In this section, we provide additional implementation de-
tails for completeness.

In the WSOD training stage, we set the maximum it-
eration numbers to 50k, 60k and 200k for VOC2007,
VOC2012 and MS-COCO, respectively. Batch size is set
to be 4 for the basic OICR model. as we input 4 im-
ages with 4 different input transformations, the actual batch
size is 16 when we use the improved OICR. When train-
ing the improved OICR model, p = 0.1,s; = 0.05 are
set for all datasets. When training the FSOD model with
pseudo ground-truth, maximum iteration numbers are 12k,
18k, 50k for VOC2007, VOC2012 and MS-COCO, respec-
tively. Learning rate and batch size are 0.01 and 8 for
VOC2007 and VOC2012. For MS-COCO, we double the
batch size to 16 and adjust the learning rate to 0.02 based
on batch size. The learning rate is decayed with a factor of
10 at (8k, 10.5k), (12k, 16k) and (30k, 40k) for VOC2007,
VOC2012 and MS-COCO, respectively. When mining po-
tential useful supervisory signals by the semi-supervised
learning paradigm, maximum iteration numbers are 15k,
30k, 50k for VOC2007, VOC2012 and MS-COCO, respec-

Backbone PGF | SSOD TI’LAP50;95 7nAP5(] 77’LAP75
ResNet50 v 27.3 57.6 22.5
ResNet50 v v 31.6 62.7 28.1
ResNet101 v 28.7 58.2 24.2
ResNet101 v v 324 63.2 29.3
ResNeXt101 v 29.1 59.1 25.5
ResNeXt101 v v 33.0 64.7 30.1

Table A.1. Results for SoS-WSOD when using ResNet101 and
ResNeXt101 as the backbone on VOC2007.

tively. Batch sizes for the unlabeled subset and “clean” la-
beled subset are both 8 on VOC2007 and VOC2012, and
doubled to 16 on MS-COCO. Learning rate is set to 0.01 on
all datasets. We do not modify any other hyperparameters
of object detectors.

As for the data argumentation, following [12], we use
random flip and multi-scale training in which scales range
from 480 to 1216 with stride 32 in stage 1. In stage 2 and 3,
we apply the same data augmentations as [10]. For weak
augmentation, only scale transform and random flip are
used. Color jittering, grayscale, Gaussian blur, and cutout
patches are randomly applied for strong augmentation addi-
tionally.

A.4. Ability to adopt modern backbones

In order to show that SoS-WSOD can readily enjoy
the benefits from modern fully supervised object detection
techniques, we conducted experiments using ResNetl101
and ResNeXt101, which are widely used in fully supervised
object detection, as the backbone of SoS-WSOD in stages
2 and 3. In Table A.1, we show the results on VOC2007.
These results demonstrate that our SoS-WSOD can success-
fully adopt different modern backbones. Note that TTA was
not used for results in Table A.1.

A.5. Ability to adopt different detector archi-
tectures

In order to show that SoS-WSOD can also enjoy ben-
efits from different detector architectures, we conducted
experiments using Cascade R-CNN [3] with ResNet50 as
the backbone on the VOC2007 dataset. Experiment re-
sults in Table A.2 show that SoS-WSOD can successfully
adopt different modern detector architectures such as Cas-
cade R-CNN. The experimental results also illustrate that
using Cascade R-CNN as the detector, SoS-WSOD can ob-
tain performance gains and more high-quality detection re-
sults.



Detector PGF | SSOD | mAPs0.95 | mAPsg | mAP75
Faster R-CNN v 27.3 57.6 22.5
Faster R-CNN v v 31.6 62.7 28.1

Cascade R-CNN v 29.9 56.7 27.6
Cascade R-CNN v v 32.5 61.3 30.8

Table A.2. Results for SoS-WSOD when using Cascade R-CNN
as the detector on VOC2007.

A.6. Result on VOC2012

The results on VOC2012 we reported in Sec. 4 of
the main paper were directly returned from the evaluation
server of the PASCAL VOC Challenge [6]. The detailed
results of SoS-WSOD (using all stages) can be obtained by
visiting these two anonymous result links.'?

A.7. Per-class detection results

In Table A.3, we report and compare the per-class de-
tection mAPs5q results on VOC2007. Besides, we also re-
port and compare correct localization (CorLoc) results on
VOC2007 trainval set in Table A 4.

A.8. More visualization results

In Sec. 4 of the main paper, we only show some visual-
ization results on MS-COCO due to the limited space. Here,
more visualization results are shown in Fig. A.1 to A.3.

Ihttp://host . robots.ox.ac.uk: 8080 /anonymous /
Q4JFTS.html

2http://host . robots.ox.ac.uk:8080/anonymous/
PDKOQ9.html



Method ‘Backbone ‘ aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv ‘mAPm

Pure WSOD
WSDDN [2] VGG16 | 393 430 288 204 8.0 455 479 221 84 335 236 292 385 479 203 200 358 308 419 20.1 30.2
OICR [14] VGG16 | 580 624 31.1 194 130 651 622 284 248 447 306 253 378 655 157 241 417 469 643 626 | 412
PCL [13] VGG16 | 544 690 393 192 157 629 644 300 251 525 444 196 393 677 178 229 466 575 586 630 | 435
W2F [18] VGGl6 | 635 70.1 505 319 144 720 678 737 233 534 494 659 572 672 276 238 518 587 640 623 | 524
C-MIDN [7] VGG16 | 533 715 498 26.1 203 703 699 683 287 653 451 646 580 712 200 275 549 549 694 635 | 526
C-MIDN +FR [7] | VGGl6 | 541 745 569 264 222 687 689 748 252 648 464 703 663 675 21.6 244 530 597 687 589 | 536
Pred Net [1] VGG16 | 66.7 69.5 528 314 247 745 741 673 146 530 461 529 699 708 185 284 546 60.7 67.1 604 | 529
SLV [4] VGG16 | 656 714 490 371 246 69.6 703 706 308 631 360 614 653 684 124 299 524 600 676 645 ]| 535
SLV +FR [4] VGG16 | 62.1 721 541 345 256 667 674 712 242 616 475 716 720 672 121 246 517 611 653 60.1| 539
WSOD2 [17] VGG16 | 65.1 648 572 392 243 698 662 610 298 646 425 60.1 712 707 219 281 586 597 522 648 | 53.6
IM-CFB [16] VGG16 | 64.1 746 447 294 269 733 720 712 281 667 481 638 555 683 178 277 544 627 705 666 | 543
MIST [11] VGGl6 | 688 777 570 277 289 69.1 745 670 321 732 481 452 544 737 350 293 641 538 653 652 | 549
CASD [8] VGG16 | 70.5 70.1 57.0 458 295 745 728 714 253 676 493 647 658 727 237 259 563 60.8 654 665 | 56.8
SoS-WSOD (ours) | VGG16 | 67.4 83.1 562 202 446 809 820 787 303 760 495 566 749 76.1 30.1 297 641 566 767 72.6| 60.3
SoS-WSOD (ours) | ResNet50 | 77.9 81.2 589 267 543 825 840 835 363 765 575 584 785 786 338 374 640 634 815 740 | 644

WSOD with transfer
OCUD +FR [19] ‘ResNet50‘65.5 577 65.1 413 430 736 757 804 334 722 338 813 79.6 630 594 109 651 642 727 672 602

LBBA [5] VGG16 | 703 723 487 387 304 743 766 69.1 334 682 505 67.0 49.0 736 245 274 631 589 660 692 | 56.6
Table A.3. Per-class detection results on the VOC2007 test set.
Method \ Backbone \ aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv \ CorLocsg
Pure WSOD

WSDDN [2] VGG16 | 65.1 588 585 331 398 683 602 59.6 348 645 305 43.0 56.8 824 255 41.6 615 559 659 637 535
OICR [14] VGG16 | 81.7 804 487 495 328 81.7 854 40.1 406 795 357 337 60.5 888 218 579 763 599 753 8l4 60.6
W2F [18] VGG16 | 854 875 625 543 355 853 86.6 823 397 829 494 765 748 90.0 468 539 845 683 79.1 799 70.3
Pred Net [1] VGG16 | 886 863 718 534 512 876 89.0 653 332 866 588 659 877 933 309 589 834 678 787 802 70.9
SLV [4] VGG16 | 84.6 843 733 585 492 802 870 794 468 836 418 793 888 904 195 597 794 677 829 832 71.0
SLV +FR [4] VGG16 | 858 859 733 569 527 79.7 87.1 840 493 829 468 812 89.8 924 212 593 804 704 821 788 72.0
WSOD2 [17] VGG16 | 87.1 80.0 748 60.1 366 792 838 70.6 435 884 460 747 874 908 442 524 814 618 677 799 69.5
MIST [11] VGG16 | 875 824 760 580 447 822 875 712 491 815 51.7 533 714 928 382 528 794 610 783 76.0 68.8
SoS-WSOD (ours) | VGG16 | 824 91.8 664 475 635 887 948 858 447 936 635 706 91.6 935 378 620 906 71.6 86.6 832 75.5
SoS-WSOD (ours) | ResNet50 | 89.5 93.0 71.8 492 725 887 938 884 544 943 705 706 930 951 397 702 89.6 747 83.1 863 78.7

‘WSOD with transfer
OCUD +FR [19] ‘ResNetSO‘SS‘S 675 87.1 686 683 858 904 887 435 952 316 909 942 888 724 238 887 66.1 89.7 767 75.2

LBBA [5] VGG16 | 89.2 82.0 742 532 512 848 875 837 462 870 483 847 799 924 403 476 887 656 81.0 817 72.5

Table A.4. Correct localization (CorLoc) results on the VOC2007 trainval set.

Figure A.1. Visualization of SoS-WSOD results on MS-COCO (more examples in addition to Fig. 2 in the main paper). Top row:
groundtruth annotations. 2nd to 4th rows: detection results from stages 1, 2 and 3, respectively. Last column: a failure case.



Figure A.2. Visualization of SoS-WSOD results on VOC2007. Top row: groundtruth annotations. 2nd to 4th rows: detection results from
stages 1, 2 and 3, respectively.

Figure A.3. Visualization of SoS-WSOD results on VOC2007 (more examples in addition to Fig. A.2). Top row: groundtruth annotations.
2nd to 4th rows: detection results from stages 1, 2 and 3, respectively.
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