
Appendix to “Salvage of Supervision in Weakly Supervised Object Detection”

A.1. Introducing the pipeline of OICR
In this part, we will introduce the details of OICR [14],

a widely used framework in WSOD. OICR is composed of
two parts, a multiple instance detection network (MIDN)
and several online instance classifier refinement (OICR)
branches. There are different choices to implement the
MIDN part. WSDDN [2], the first work to integrate the
MIL process into an end-to-end detection model, is the
most commonly used one. As for the OICR branch, orig-
inally it only contained one classifier and a softmax func-
tion. [15] started to introduce the bounding box regressor
into OICR branches, which was proved to be effective in
many works [8, 11, 16, 17].

Specifically, we denote I ∈ Rh×w×3 as an RGB im-
age, y = [y1, y2, . . . , yC ] ∈ [0, 1]C as its correspond-
ing groundtruth class labels, and R ∈ R4×N as the pre-
computed object proposals. C is the total number of object
categories and N is the number of proposals. With the help
of a pre-trained backbone model, we can extract the feature
map for I , and proposal feature vectors are extracted by an
RoI pooling layer and two FC layers. Following WSDDN,
proposal feature vectors are branched into two streams to
produce classification logits xc ∈ RC×N and detection log-
its xd ∈ RC×N . Then xc and xd will be normalized by
passing through two softmax layers along the category di-
rection and the proposal direction, respectively, as shown in
Equation 1. [σ(xc)]ij represents the probability of proposal
j belonging to class i and [σ(xd)]ij represents the likeli-
hood of proposal j to contain an informative part of class i
among all proposals in image I .

[σ(xc)]ij =
expx

c
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(1)
The final proposal scores of a multiple instance detection
network are computed by element-wise product: xR =
σ(xc) ⊙ σ(xd). During the training process, image score
of the cth category ϕc can be obtained by summing over all
proposals: ϕc =

∑N
r=1 x

R
c,r. Then the MIL classification

loss is calculated by Equation 2.

Lmil = −
C∑

c=1

[yc log ϕc + (1− yc log(1− ϕc))] . (2)

As to the online instance classifier refinement (OICR)
branches, they are added on top of MIDN, i.e., WSDDN
here. Proposal feature vectors are fed into another K re-
finement stages and to generate classification logits xk ∈
R(C+1)×N , k ∈ {1, 2, . . . ,K}. The kth branch is super-
vised by pseudo labels yk ∈ [0, 1](C+1)×N , which are gen-
erated by top-score proposals of each category from the pre-
vious branch. One proposal will be encouraged to be clas-
sified as the c-th class only if it has high overlap with any
top-score proposal of the previous OICR branch. The loss
for the classifier of the kth branch is defined as Equation 3,
where wk

r is the loss weight of proposal r:

Lk
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wk
r y

k
c,r log x

k
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The loss for bounding box regressor of the kth OICR
branch is defined as Equation 4, Npos is the number of pos-
itive proposals in the kth branch, λreg is a scalar weight
of the regression loss, tkr , t̂

k
r are the predicted and pseudo

groundtruth offsets of the rth positive proposal in the kth

branch, respectively:

Lk
reg =

1

Npos

Npos∑
r=1

λregLsmooth−L1(t
k
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k
r ) . (4)

A.2. Details of our improved OICR
In this part, we provide details of our improved

OICR [14], which is used in stage 1. As we claimed in
Sec. 3.1, we proposed an improved OICR as the baseline in
our main experiments.

Mining Rules. Recent works [9, 11, 13, 16] demonstrate
that better mining rules are critical in obtaining higher recall
of objects. OICR mines proposals that have high overlap
with top-scoring proposals. MIST [11] mines more propos-
als with low overlap between each other but mines many
wrong proposals, too. We notice that recall and precision
are both essential for mining proposals. Hence, we intro-
duce a mining rule (Algorithm A.1) to strike a balance be-
tween the two factors. In Line 6, the rule to only retain the
top p percent of proposals is learned from MIST, but we
remove low score proposals to keep the precision.

Multi-Input. A very recent paper CASD [8] showed
that the self-attention transfer between different versions
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of an input image is beneficial for boosting performance
in WSOD. We find that adopting the multi-input tech-
nique alone is also helpful for performance and stability
of the training process even without using inverted atten-
tion, CASD’s self-attention transfer and other tricks. We
randomly select inputs with two different scales and their
flipped versions, feed them into the model to obtain RoI
scores for different inputs, and average the scores of each
proposal to get the final RoI scores.

Algorithm A.1 Mining Rules in SoS-WSOD

Input: An input image I , class labels y1, . . . , ym that
are active in I , a set of proposals R with size n, maxi-
mum percent p, score threshold st
Output: Pseudo groundtruth seed boxes R̂ for I

1: R̂ = ∅
2: Feed I and R into the model to obtain RoI scores S

for each proposal in R
3: for i = 1, . . . , m do
4: Si = S[i, :] // get scores for the i-th active class
5: Ri = SORTEDSi(R) // sort the proposals ac-

cording to the scores in Si

6: Pick top n× p proposals, but remove those whose
scores are low (< st). Denote them as R′

i

7: R′
i = NMS(R′

i, 0.01) // remove those proposals
having overlap with higher scored ones

8: R̂ = R̂
⋃
R′

i

9: end for

A.3. Implementation Details

In this section, we provide additional implementation de-
tails for completeness.

In the WSOD training stage, we set the maximum it-
eration numbers to 50k, 60k and 200k for VOC2007,
VOC2012 and MS-COCO, respectively. Batch size is set
to be 4 for the basic OICR model. as we input 4 im-
ages with 4 different input transformations, the actual batch
size is 16 when we use the improved OICR. When train-
ing the improved OICR model, p = 0.1, st = 0.05 are
set for all datasets. When training the FSOD model with
pseudo ground-truth, maximum iteration numbers are 12k,
18k, 50k for VOC2007, VOC2012 and MS-COCO, respec-
tively. Learning rate and batch size are 0.01 and 8 for
VOC2007 and VOC2012. For MS-COCO, we double the
batch size to 16 and adjust the learning rate to 0.02 based
on batch size. The learning rate is decayed with a factor of
10 at (8k, 10.5k), (12k, 16k) and (30k, 40k) for VOC2007,
VOC2012 and MS-COCO, respectively. When mining po-
tential useful supervisory signals by the semi-supervised
learning paradigm, maximum iteration numbers are 15k,
30k, 50k for VOC2007, VOC2012 and MS-COCO, respec-

Backbone PGF SSOD mAP50:95 mAP50 mAP75

ResNet50 ✓ 27.3 57.6 22.5
ResNet50 ✓ ✓ 31.6 62.7 28.1

ResNet101 ✓ 28.7 58.2 24.2
ResNet101 ✓ ✓ 32.4 63.2 29.3

ResNeXt101 ✓ 29.1 59.1 25.5
ResNeXt101 ✓ ✓ 33.0 64.7 30.1

Table A.1. Results for SoS-WSOD when using ResNet101 and
ResNeXt101 as the backbone on VOC2007.

tively. Batch sizes for the unlabeled subset and “clean” la-
beled subset are both 8 on VOC2007 and VOC2012, and
doubled to 16 on MS-COCO. Learning rate is set to 0.01 on
all datasets. We do not modify any other hyperparameters
of object detectors.

As for the data argumentation, following [12], we use
random flip and multi-scale training in which scales range
from 480 to 1216 with stride 32 in stage 1. In stage 2 and 3,
we apply the same data augmentations as [10]. For weak
augmentation, only scale transform and random flip are
used. Color jittering, grayscale, Gaussian blur, and cutout
patches are randomly applied for strong augmentation addi-
tionally.

A.4. Ability to adopt modern backbones

In order to show that SoS-WSOD can readily enjoy
the benefits from modern fully supervised object detection
techniques, we conducted experiments using ResNet101
and ResNeXt101, which are widely used in fully supervised
object detection, as the backbone of SoS-WSOD in stages
2 and 3. In Table A.1, we show the results on VOC2007.
These results demonstrate that our SoS-WSOD can success-
fully adopt different modern backbones. Note that TTA was
not used for results in Table A.1.

A.5. Ability to adopt different detector archi-
tectures

In order to show that SoS-WSOD can also enjoy ben-
efits from different detector architectures, we conducted
experiments using Cascade R-CNN [3] with ResNet50 as
the backbone on the VOC2007 dataset. Experiment re-
sults in Table A.2 show that SoS-WSOD can successfully
adopt different modern detector architectures such as Cas-
cade R-CNN. The experimental results also illustrate that
using Cascade R-CNN as the detector, SoS-WSOD can ob-
tain performance gains and more high-quality detection re-
sults.



Detector PGF SSOD mAP50:95 mAP50 mAP75

Faster R-CNN ✓ 27.3 57.6 22.5
Faster R-CNN ✓ ✓ 31.6 62.7 28.1

Cascade R-CNN ✓ 29.9 56.7 27.6
Cascade R-CNN ✓ ✓ 32.5 61.3 30.8

Table A.2. Results for SoS-WSOD when using Cascade R-CNN
as the detector on VOC2007.

A.6. Result on VOC2012
The results on VOC2012 we reported in Sec. 4 of

the main paper were directly returned from the evaluation
server of the PASCAL VOC Challenge [6]. The detailed
results of SoS-WSOD (using all stages) can be obtained by
visiting these two anonymous result links.12

A.7. Per-class detection results
In Table A.3, we report and compare the per-class de-

tection mAP50 results on VOC2007. Besides, we also re-
port and compare correct localization (CorLoc) results on
VOC2007 trainval set in Table A.4.

A.8. More visualization results
In Sec. 4 of the main paper, we only show some visual-

ization results on MS-COCO due to the limited space. Here,
more visualization results are shown in Fig. A.1 to A.3.

1http://host.robots.ox.ac.uk:8080/anonymous/
Q4JFTS.html

2http://host.robots.ox.ac.uk:8080/anonymous/
PDK0Q9.html



Method Backbone aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv mAP50

Pure WSOD
WSDDN [2] VGG16 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.9 20.1 30.2
OICR [14] VGG16 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
PCL [13] VGG16 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5
W2F [18] VGG16 63.5 70.1 50.5 31.9 14.4 72.0 67.8 73.7 23.3 53.4 49.4 65.9 57.2 67.2 27.6 23.8 51.8 58.7 64.0 62.3 52.4
C-MIDN [7] VGG16 53.3 71.5 49.8 26.1 20.3 70.3 69.9 68.3 28.7 65.3 45.1 64.6 58.0 71.2 20.0 27.5 54.9 54.9 69.4 63.5 52.6
C-MIDN + FR [7] VGG16 54.1 74.5 56.9 26.4 22.2 68.7 68.9 74.8 25.2 64.8 46.4 70.3 66.3 67.5 21.6 24.4 53.0 59.7 68.7 58.9 53.6
Pred Net [1] VGG16 66.7 69.5 52.8 31.4 24.7 74.5 74.1 67.3 14.6 53.0 46.1 52.9 69.9 70.8 18.5 28.4 54.6 60.7 67.1 60.4 52.9
SLV [4] VGG16 65.6 71.4 49.0 37.1 24.6 69.6 70.3 70.6 30.8 63.1 36.0 61.4 65.3 68.4 12.4 29.9 52.4 60.0 67.6 64.5 53.5
SLV + FR [4] VGG16 62.1 72.1 54.1 34.5 25.6 66.7 67.4 77.2 24.2 61.6 47.5 71.6 72.0 67.2 12.1 24.6 51.7 61.1 65.3 60.1 53.9
WSOD2 [17] VGG16 65.1 64.8 57.2 39.2 24.3 69.8 66.2 61.0 29.8 64.6 42.5 60.1 71.2 70.7 21.9 28.1 58.6 59.7 52.2 64.8 53.6
IM-CFB [16] VGG16 64.1 74.6 44.7 29.4 26.9 73.3 72.0 71.2 28.1 66.7 48.1 63.8 55.5 68.3 17.8 27.7 54.4 62.7 70.5 66.6 54.3
MIST [11] VGG16 68.8 77.7 57.0 27.7 28.9 69.1 74.5 67.0 32.1 73.2 48.1 45.2 54.4 73.7 35.0 29.3 64.1 53.8 65.3 65.2 54.9
CASD [8] VGG16 70.5 70.1 57.0 45.8 29.5 74.5 72.8 71.4 25.3 67.6 49.3 64.7 65.8 72.7 23.7 25.9 56.3 60.8 65.4 66.5 56.8
SoS-WSOD (ours) VGG16 67.4 83.1 56.2 20.2 44.6 80.9 82.0 78.7 30.3 76.0 49.5 56.6 74.9 76.1 30.1 29.7 64.1 56.6 76.7 72.6 60.3
SoS-WSOD (ours) ResNet50 77.9 81.2 58.9 26.7 54.3 82.5 84.0 83.5 36.3 76.5 57.5 58.4 78.5 78.6 33.8 37.4 64.0 63.4 81.5 74.0 64.4

WSOD with transfer
OCUD + FR [19] ResNet50 65.5 57.7 65.1 41.3 43.0 73.6 75.7 80.4 33.4 72.2 33.8 81.3 79.6 63.0 59.4 10.9 65.1 64.2 72.7 67.2 60.2
LBBA [5] VGG16 70.3 72.3 48.7 38.7 30.4 74.3 76.6 69.1 33.4 68.2 50.5 67.0 49.0 73.6 24.5 27.4 63.1 58.9 66.0 69.2 56.6

Table A.3. Per-class detection results on the VOC2007 test set.

Method Backbone aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv CorLoc50
Pure WSOD

WSDDN [2] VGG16 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
OICR [14] VGG16 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6
W2F [18] VGG16 85.4 87.5 62.5 54.3 35.5 85.3 86.6 82.3 39.7 82.9 49.4 76.5 74.8 90.0 46.8 53.9 84.5 68.3 79.1 79.9 70.3
Pred Net [1] VGG16 88.6 86.3 71.8 53.4 51.2 87.6 89.0 65.3 33.2 86.6 58.8 65.9 87.7 93.3 30.9 58.9 83.4 67.8 78.7 80.2 70.9
SLV [4] VGG16 84.6 84.3 73.3 58.5 49.2 80.2 87.0 79.4 46.8 83.6 41.8 79.3 88.8 90.4 19.5 59.7 79.4 67.7 82.9 83.2 71.0
SLV + FR [4] VGG16 85.8 85.9 73.3 56.9 52.7 79.7 87.1 84.0 49.3 82.9 46.8 81.2 89.8 92.4 21.2 59.3 80.4 70.4 82.1 78.8 72.0
WSOD2 [17] VGG16 87.1 80.0 74.8 60.1 36.6 79.2 83.8 70.6 43.5 88.4 46.0 74.7 87.4 90.8 44.2 52.4 81.4 61.8 67.7 79.9 69.5
MIST [11] VGG16 87.5 82.4 76.0 58.0 44.7 82.2 87.5 71.2 49.1 81.5 51.7 53.3 71.4 92.8 38.2 52.8 79.4 61.0 78.3 76.0 68.8
SoS-WSOD (ours) VGG16 82.4 91.8 66.4 47.5 63.5 88.7 94.8 85.8 44.7 93.6 63.5 70.6 91.6 93.5 37.8 62.0 90.6 71.6 86.6 83.2 75.5
SoS-WSOD (ours) ResNet50 89.5 93.0 71.8 49.2 72.5 88.7 93.8 88.4 54.4 94.3 70.5 70.6 93.0 95.1 39.7 70.2 89.6 74.7 88.1 86.3 78.7

WSOD with transfer
OCUD + FR [19] ResNet50 85.8 67.5 87.1 68.6 68.3 85.8 90.4 88.7 43.5 95.2 31.6 90.9 94.2 88.8 72.4 23.8 88.7 66.1 89.7 76.7 75.2
LBBA [5] VGG16 89.2 82.0 74.2 53.2 51.2 84.8 87.5 83.7 46.2 87.0 48.3 84.7 79.9 92.4 40.3 47.6 88.7 65.6 81.0 81.7 72.5

Table A.4. Correct localization (CorLoc) results on the VOC2007 trainval set.

Figure A.1. Visualization of SoS-WSOD results on MS-COCO (more examples in addition to Fig. 2 in the main paper). Top row:
groundtruth annotations. 2nd to 4th rows: detection results from stages 1, 2 and 3, respectively. Last column: a failure case.



Figure A.2. Visualization of SoS-WSOD results on VOC2007. Top row: groundtruth annotations. 2nd to 4th rows: detection results from
stages 1, 2 and 3, respectively.

Figure A.3. Visualization of SoS-WSOD results on VOC2007 (more examples in addition to Fig. A.2). Top row: groundtruth annotations.
2nd to 4th rows: detection results from stages 1, 2 and 3, respectively.
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