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Abstract

The supplementary document includes: (i) further illus-
tration of the suggested Jacobian computation, (ii) neural
architecture design details of the proposed attention flows
(AttmFlows), (iii) detailed experimental settings, (iv) train-
ing details and curves, (v) more visual results on MNIST,
CIFARIO, CelebA and Cityscapes, (vi) better/more visual-
ization plots of the ablation study presented in the main pa-
per on the used datasets, as well as some more results for
different iTrans-based attention head numbers on CelebA,
(vii) pseudo code of the proposed key components (i.e.,
iMap and iTrans), and (viii) further remarks on the possible
future directions.

1. Jacobian Computation

The suggested masking over the learned attention
weights (Eqn.6 and Eqn.8 of the main paper) additionally
leads to tractable Jacobian computation, i.e., Eqn.7 and
Eqn.9 of the main paper. One example of the masked at-
tention weight is illustrated in Fig.(1) (a). For this exam-
ple, the resulting Jacobian is a block-lower triangular ma-
trix, as shown in Fig.(1) (b). This is because one part of the
input is made to depend on the other portion of the input.
In this case, the determinant of a block triangular matrix
can be easily computed by the product of the determinants
of its block diagonal matrices. The resulting Jocobian de-
terminant enables us to compute the log-likelihood of data
efficiently by Eqn.2 (or Eqn.3) of the main paper.

2. AttnFlow Network Architecture

The proposed attention flow model (AttnFlow) aims to
insert invertible map-based (iMap) and transformer-based
(iTrans) attentions to regular flow-based generative models.
Fig.(2) (a) (b) show the neural architecture design of reg-
ular flow-based generative models and the proposed Attn-
Flow respectively. As shown in Fig.(2) (b), the invertible
attention modules (i.e., iMap and iTrans) can be stacked on
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the affine coupling layers. It is also possible to add the at-
tention modules at any other positions, such as before in-
vertible 1 x 1 convolution, or actnorm. The detailed ar-
chitectures of the proposed iMap and iTrans are illustrated
in Fig. (2) (c¢) (d) respectively. Their designs follow the
conceptual graphs of forward and inverse propagation of
the proposed Map-based and Trans-based attention mech-
anisms that are shown in Fig.(3) of the major paper. In par-
ticular, both of the iMap and iTrans modules apply the 3D
checkboard mask in order to make the proposed attention
invertible. After the 3D masking, the iMap attention fur-
ther applies map-based transformations (i.e., 1D convolu-
tion and average pooling) for the first-order attention learn-
ing. By comparison, the iTrans attention aims at learning the
second-order correlations among the flow feature maps with
a scaled dot-product over two different transformations of
inputs, which are obtained by two 2D convolutions, respec-
tively. More architecture details of the proposed AttnFlow-
iMap and AttnFlow-iTrans are shown in Fig.(2) (c) (d).

3. Detailed Experimental Setup

We used MNIST [7], CIFAR10 [6], CelebA [8] and
Cityscapes [ ] datasets to evaluate the proposed AttnFlows
in the main paper. MNIST is a dataset of 70,000 small
square 28 x 28 pixel grayscale images of handwritten sin-
gle digits between 0 and 9. Following most of the gener-
ative modeling works such as [5, 10], we use the whole
dataset from the real set to train our AttnFlows and the com-
peting methods. CIFAR10 dataset is comprised of 60,000
32 x 32 pixel color images of objects from 10 classes, such
as frogs, birds, cats, ships, airplanes, etc. To train the pro-
posed AttnFlows and its competitors, we also utilize the
whole dataset for the real data. We additionally evaluate the
proposed cAttnFlows for face super-resolution (8) using
5000 160 x 160 images from the test split of the CelebA
dataset. On CelebA, we use the full train split of CelebA
for the training high-resolution image set. Following [9], we
apply a bicubic kernel to down-scale those selected images
into 20 x 20 low-resolution images. We use 162770 train-
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Figure 1. (a) Example of masked attention weight. (b) Example of Jacobian matrix structure.
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Figure 2. (a) Neural architecture of regular flow-based generative models. (b) Neural architecture design of the proposed attention flow
model (AttnFlow), which aims at inserting invertible map-based (iMap) attention and transformer-based (iTrans) attention to regular flow-
based generative models. x, h;, z indicates the data, latent variable and intermediate coding respectively. (c) Detailed design of iMap.
B, H, W, C indicate batch size, image hight, width, and channel number respectively. x MASK represents the masking operation that
applies 3D checkboard mask to the input. Conv2D 1 X 1 is an invertible 2D convolution. s is a learnable scale. Finally averaged pooled
features are fed with learnable parameters into MAP,, that is sigmoid function. (d) Detailed design of iTrans. MASK indicates the 3D

checkboard masking, and Mask(opt) is optional.

ing images following the same setup as [9] for the train-test
split. We also use Cityscapes [1] to evaluate the proposed
cAttnFlows. Each instance of this dataset is a 256 x 256
picture of a street scene that is segmented into objects of 30
different classes, e.g., road, sky, buildings, cars, and pedes-
trians. 5000 of these images come with fine per-pixel class

annotations of the image, and this is commonly called as
segmentation masks. We employ the data splits provided by
the original dataset (2975 training and 500 validation im-
ages), and train different models to generate street-scene
images conditioned on their segmentation masks.
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Figure 3. (a) Training curves of the proposed AttnFlow-iMap and AttnFlow-iTrans (with 1, 3 head(s)) on CelebA. The x axis corresponds to
the training iterations, and the y axis indicates the negative log-likelihood (NLL) values. (b-d) Generated sample change along the training
process of AttnFlow-iMap and AttnFlow-iTrans (with 1, 3 head(s)), showing that the generated sample keeps improving the quality until

the model converges.

4. Training Details and Curves

A single TITAN-RTX GPU (24GB) is used to train
each of the proposed AttnFlows/cAttnFlows. Specially, the
batch size' is set to 32 for the training on them on both
of MNIST and CIFARI10, as done in [5, 10]. The pro-
posed AttnFlow-iMap and AttnFlow-iTrans models (L=3,
K=2) are trained for around 2 days and 3 days on MNIST,
and they (L=3,K=4) are trained for 3 days and 5 days on
CIFAR10. The number of iterations for convergence are
100k iterations and 90k iterations for MNIST and CIFAR10
respectively. The proposed cAttnFlow-iMap (L=1,K=1) is
trained for 1.5 days, and cAttnFlow-iTrans is trained for
2 days on the CelebA datasets. A batch size is fixed as
16 for all the models on CelebA. The number of steps for
convergence are 500k iterations for all the models. On the
Cityscapes dataset, cAttnFlow-iMap (L=2,K=8) is trained
for 2 days, and cAttnFlow-iTrans is trained for 3 days.
A batch size is set to 1 for all the models due to the

Regarding the hyperparmeter setup, we use Adam with a learning rate
of 8 x 10~4, as done in [5, 10].

Method Train time Train epoch | Test time
mARFlow (CIFAR) 2.5 GPU days 100 0.48s
AttnFlow-iMap (CIFAR) 3 GPU days 100 0.50s
AttnFlow-iTrans (CIFAR) 5 GPU days 100 0.61s
SRFlow (CelebA) 1 GPU day 20 0.077s
AttnFlow-iMap (CelebA) 1.5 GPU days 20 0.104s
AttnFlow-iTrans (CelebA) 2 GPU days 20 0.317s

Table 1. Comparison of the proposed AttnFlow-iMap and AttnFlow-
iTrans against their corresponding backbones mARFlow/SRFlow.

memory limit. The number of steps for convergence are
200k iterations for all the models on Cityscapes. Besides,
we further compare our AttnFlows-iMap/iTrans against
mARFlow [10] and SRFlow [9] (our two main backbones
with the same levels and steps as those of ours) in terms
of training time, training epochs and test time (per image)
in Table 1. The results show that the proposed AttnFlows
and the competing methods are trained at the same epochs.
Their training and inference time are relatively comparable.

Fig.(3) (a) shows the training curves of the proposed
AttnFlow-iMap and AttnFlow-iTrans on CelebA. It reflects
that the proposed AttnFlows can be trained smoothly for a
good convergence in terms of the negative log-likelihood
(NLL) loss. In addition, Fig.(3) (b)(c)(d) demonstrate the
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sample change along the training processes of the proposed
AttnFlows. They show that the generated samples can keep
improving the quality until the convergence.

5. More Results for MNIST, CIFAR10, CelebA
and Cityscapes

Fig.(4), Fig.(5), Fig.(6) and Fig.(7) show more visual re-
sults of the proposed AttnFlows and the competing methods
on MNIST, CIFARI10, CelebA and Cityscapes respectively.
From the results, we can observe that the generated sam-
ples of our proposed AttnFlows are highly competitive, and
some are more visually pleasing compared to the competing
methods.

6. More Ablation Study

For the ablation study on the proposed AttnFlows, bet-
ter/more visualizations of the major paper’s Fig.(5) are

olz[/|6|5]|8[s[SH7|3|s|4|4[O]4]9]
DOEBEENE k ﬂIllElE
2]z ]v[s]/|e[cl5 8|4 2|5 7|08
GIEEIEIEEE
£|9]213]2|6|9] ]
3|«lclol4|5]|e]7]
HEREREEE

I

/1582|0612

NHEINAVASIE

EEIGN G
éluld]s|2] s [¢]0
2|l r=l8/7]3]7]

(b) Proposed AttnFlow-iMap

e
1%

HEOEGHGE EERENHD
7]

(d) Proposed ArtnFlow-iTrans (3 heads)
Figure 4. Random samples generated by the proposed AttnFlows and the state-of-the-art flows on the MNIST dataset.

shown in Fig.(8) and Fig.(9). Additionally, Fig.(9) includes
the ablation study on different head numbers of the pro-
posed AttnFlow-iTrans for CelebA. As shown in Fig.(8), in-
serting the attention modules after each coupling layer gen-
erally works the best in the most of cases. Besides, Fig.(9)
shows that using 5 heads performs the best on the MNIST
and CIFAR10 datasets, while employing 3 heads works the
best on CelebA. This implies that using 3 or 5 heads is suf-
ficient for the proposed AttnFlow-iTrans on the three em-
ployed datasets.

7. Pseudo Code of Proposed AttnFlows

The proposed AttnFlow-iMap and AttnFlow-iTrans are
built upon the off-the-shelf flow models. Therefore, the ma-
jor new implementation is on the proposed iMap and iTrans
modules. The pseudo codes for their PyTorch implementa-
tion are illustrated in Fig.(10).



(c) AttnFlow-iMap (3.216 bits/dim, 33.6 FID)

8. Further Remarks for the Future Work

For the proposed AttnFlow-iTrans, we introduce a
masked version of scaled dot-product, where the introduced
masking can serve as a transformation (i.e., binary pattern
generation). To improve the generalization capability, we
could further apply a 1 x 1 2D convolution to the value
V, as done on the query Q and the key K. Also, we ex-
ploit the multi-head attention mechanism for the AttnFlow-
iTrans. To ease the computation on Jacobian determinant of
iTrans, we choose to perform a summation instead of the
commonly-used concatenation in conventional transform-
ers over the resulting attended features from multi-heads.
Following this work, we will be making more comprehen-
sive study on the full exploitation of the multi-head atten-
tion scheme. Besides, as discussed in the main paper, it
is non-trivial to apply the proposed AttnFlows to deeper
flows, such as the full SRFlow model that contains more
flow levels. We study that it is mainly because the pro-
posed attentions’ inverse and Jacobian determinant compu-
tations are often numerically unstable when meeting deeper
flows. This is roughly matched with the discovery in [2],
which finds pure attentions typically lose rank doubly ex-
ponentially with the network depth. Inspired by [2], a nat-
ural solution is to apply residual learning that is capable

(d) AttnFlow-iTrans (3.217 bits/dim, 33.8 FID)
Figure 5. Random samples generated by the proposed AttnFlows and the state-of-the-art flows on the CIFAR10 dataset.

of addressing the deep attention problem. In addition, the
comprehensive evaluations over the four used datasets show
that the proposed AttnFlow-iMap sometimes outperforms
AttnFlow-iTrans, while the former also performs worse in
some cases. Hence, it is valuable to optimize the aggrega-
tion of the two complementary types of attention (i.e., first-
and second-order attentions) for real-world scenarios. To
this end, one of the most promising directions is to exploit
neural architecture search algorithms over them.
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(a) Input (b) Pix2PixGAN [4]

(c) Dual-Glow [12] (d) Full-Glow [11]

(e) Proposed cAttnFlow-iMap (f) Proposed cAttnFlow-iTrans
Figure 7. Generated samples of the proposed cAttnFlows and the state-of-the-art models for image translation on the Cityscapes dataset.
The competing methods and ours are conditioned on the semantic segmentation labels (a) to synthesize the RGB images with the resolution
being of 256 x 256.
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Figure 8. (Better/more visualisation for Fig.(5) in the major paper) Ablation studies of the proposed attentions on different positions in the
flow layers (pos-1: before actnorm, pos-2: after actnorm, pos-3: after permutation, pos-4: after coupling layer) on the MNIST, CIFAR10
and CelebA datasets. The Bits/dims metric is employed for MNIST and CIFAR10 (top), and LPIPS, PSNR and SSIM scores are reported
on CelebA (bottom).
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Figure 9. (Better/more visualisation for Fig.(5) in the major paper) Ablation studies of the proposed attentions on different number of
attention heads for the proposed iTrans attention (1h: 1head, 3h: 3 heads, 5h: 5 heads, 7h: 7 heads) on the MNIST, CIFAR10 and CelebA
datasets. The Bits/dims metric is employed for MNIST and CIFAR10 (top), and LPIPS, PSNR and SSIM scores are reported on CelebA
(bottom).



class IMAP(nn.Module):
def __init__ (self, input_channels):

super (IMAP, self)._ init_ ()
self.input channels=input_channels
self.weight = torch.empty([self.input_channels,self.input_channels,1])
nn.init.kaiming_uniform (self.weight, a=math.sqrt(5))
self.weight=torch.nn.Parameter(self.weight).cuda()
self.bias = torch.empty([self.input_channels])
fan_in, _ = nn.init._calculate_fan_in_and fan out(self.weight)
bound = 1 / math.sqrt(fan_in)
nn. .uniform (self.bias, -bound, bound)
self.bias =torch.nn.Parameter(self.bias).cuda()
self.register parameter("s",nn.Parameter(torch.randn([1,self.input_channels,1])))
self.register parameter("offset",nn.Parameter(torch.ones([1])*8))
self.pooll = torch.nn.AvgPoolld(self.input channels)

forward(self, input: torch.Tensor, logdet-0, reverse-False, permute-False):
reverse:
self.num_channels=input.shape[-1]**2
self.mask-checkerboard
B, C, H, W input.shape
sig = torch.nn.Sigmoid()
input_masked = input.view(B, C, H * W) self.mask
z = ConvlD(input_masked, self.weight, bias=self.bias)
z_new = z.transpose(l, 2)
pool_out = self.pooll(z_new) #Average pooling
attn_out (sig(pool_out.squeeze(-1)+self.offset)+le-5).unsqueeze(1)
attn mask = (1 - self.mask) * attn_out + self.mask * (sig(self.s)+le-5)
out_new = input * attn_mask.view(B, C,H * W).view(B, C, H, W)
logdet = logdet + torch.sum((self.input_channels 2) (torch.log(sig(pool_out.squeeze(-1)+self.offset)+le-5)),dim=-1)
logdet = logdet + torch.sum(torch.log(sig(self.s)+le-5) self.mask)
turn out_new,logdet

out_new=input
self.num_channels=input.shape[-1]**2
self.mask-=checkerboard
B, C, H, W = out_new.shape
sig = torch.nn.Sigmoid()

i sig(self.s)+le-5

i torch.ones_like(s_sig) s_sig
out_new.view(B, C,H * W) self.mask * s_sig_in

out_conv = ConvlD(inp_masked, self.weight, bias=self.bias) #Convl
pool_out = self.pooll(out_conv.transpose(l, 2)) a age pooling
attn_out = (sig(pool_out.squeeze(2)+self.offset)+le-5).unsqueeze(1)
attn_out = torch.ones_like(attn_out) / attn out
attn_mask = (1 - self.mask) * attn_out + self.mask * s_sig_in
input_rev = out_new (attn_mask.view(B, C,H * W).view(B, C, H, W))
logdet = logdet - torch.sum((self.input_channels// 2) (torch.log(sig(pool_out.squeeze(-1)+self.offset)+le-5)),dim=-1)
logdet = logdet - torch.sum(torch.log(sig(self.s)+le-5) self.mask)
return input_rev,logdetl

class ITRANS(nn.Module):
__init__(self,num_channels):
super (ITRANS,self).__init_.
self.c = num_channels
self.convgl = torch.nn.Parameter(torch.randn{[num_channels, num_channels,1,1]),requires_grad=True)
self.s torch.nn.Softmax(dim=-1)
self.convkl = torch.nn.Parameter(torch.randn([num_channels, num_channels,1,1]),requires_grad=True)
self.register_parameter("offset",nn.Parameter (torch.ones([1,1,1])*1.01))
self.register_parameter("scale", nn.Parameter(torch.ones([1,1,1])*10)
forward(self, input: torch.Tensor, logdet=0, reverse=False, permute=False):
if not reverse:
p = input.shape[-1]//2
inp = rearrange(input)
mask = checkerboard
inp_rev = reverse_rearrange(inp*mask)
ql = Conv2d(inp_rev, self.convql)
k1 = Conv2d(inp_rev, self.convkl)
full_inp_ql = rearrange(ql)
full inp_k1 rearrange (k1)
attn_mask checkerboard
attn (self.s((torch.matmul(full_inp_ql,full_inp_kl.permute(®,2,1))/self.scaled)))*attn mask

id torch.eye(attn.shape[-1]).cuda()*self.offset
logdet_trans torch.slogdet(attn+id)[1]*p*(p//2) *self.c
logdet — logdet - logdet_trans
out_attn torch.matmul(attn+id,inp*(1-mask))
out out_attn*(1 mask)+inp*mask
output reverse_rearrange(out)
else:
p input.shape[-1]//2
out rearrange(input)
mask = checkerboard
if permute:
mask = 1-mask
rev = out*mask
rev_rearrange = reverse_rearrange(rev)
ql = Conv2d(rev_rearrange,self.convql)
k1 = Conv2d(rev_rearrange,self.convkl)
full_inp_ql_rev = rearrange (q1)
full_inp_kl_rev rearrange (k1)
attn_mask = checkerboard
attn (self.s(torch.matmul(full_inp_ql_rev,full_inp_kl_rev.permute(@, 2, 1)/self.scale)))*attn mask
id torch.eye(attn.shape[-1]).cuda()*self.offset
logdet_trans torch.slogdet(attn+id)[1]*p*(p//2) *self.c
logdet = logdet - logdet_trans
attn_inv = torch.inverse(attn+id)
out_attn torch.matmul(attn_inv,out*(1l-mask))
output out_attn*(1-mask)+out*mask
output = reverse_rearrangeCoutput)
return output, logdet

Figure 10. Pseudo code of the proposed AttnFlow-iMap and AttnFlow-iTrans.
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