
Appendix

Comparison With MTL Methods

As mentioned in the Empricial Evaluation Section, DiS-
parse surpasses several dedicated multitask learning ap-
proaches despite the high sparsity enforced in our model.
In Table 1, we show comparison of DiSparse in both

static and dynamic sparse training setting with several MTL
approaches including DEN [1], Sluice [10], and Cross-
Stitch [8] applied on exactly the same model with the same
optimization settings. The superiroty of DiSparse is clearly
observed in the table, demonstrating that DiSparse is not
only an effective compression approach but also a powerful
tool for multitask learning.

Model T1: Semantic Seg. T2: SN Prediction Sparsity Pre-trained
mIoU↑ PixelAcc↑ Mean Err↓ Median Err↓ 11.25↑ 22.5↑ 30↑ (%)↑

Cross-Stitch [8] 25.3 57.4 16.6 13.2 43.7 72.4 83.8 0 ✗
Sluice [10] 26.6 59.1 16.6 13.0 44.1 73.0 83.9 0 ✗
DEN [1] 26.3 58.8 17.0 14.3 39.5 72.2 84.7 0 ✗
DiSparse(Static) 26.5 57.8 16.4 13.7 41.2 74.1 85.9 90 ✗
DiSparse (Dynamic) 28.2 59.2 16.5 13.5 42.3 73.1 84.7 90 ✗

Table 1. DiSparse semantic segmentation and surface normal prediction results on NYU-v2 [9] compared to other MTL approaches.

Model T1: Semantic Seg. T2: SN Prediction Sparsity Pre-trained
mIoU↑ PixelAcc↑ Mean Err↓ Median Err↓ 11.25↑ 22.5↑ 30↑ (%)↑

DeepLab [2](baseline) 27.69 58.77 16.55 14.17 39.62 73.54 86.33 0 N/A
LTH [5] 23.84 56.35 16.81 13.84 40.91 72.31 84.28 30.00 ✓
SNIP [7] 26.57 59.85 16.91 13.55 42.01 71.72 82.01 30.00 ✗
Random 25.08 55.56 17.60 14.27 40.49 70.12 81.68 30.00 ✗
DiSparse (Ours) 28.24 60.33 16.62 13.37 42.98 72.29 83.96 30.00 ✗

RigL [4] 24.83 57.92 16.78 14.84 37.76 72.18 86.15 30.00 ✗
DiSparse (Ours) 28.41 59.77 16.54 13.48 43.42 73.55 86.76 30.00 ✗

IMP [6] 29.23 59.83 16.57 13.38 43.16 72.41 84.14 30.00 ✓
Random 26.43 58.25 16.89 13.71 41.92 71.72 83.77 30.00 ✓
DiSparse (Ours) 29.44 59.98 16.56 13.35 43.21 72.25 84.06 30.00 ✓

Table 2. DiSparse semantic segmentation and surface normal prediction results on NYU-v2 [9] compared to static sparse training, dynamic
sparse training, and pre-trained model pruning methods.

Model T1: Semantic Seg. T2: Depth Prediction Sparsity Pre-trained
mIoU ↑ PixelAcc ↑ Error ↓ Abs. Error ↓ Rel. Error ↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑ (%) ↑

DeepLab [2](baseline) 42.58 74.84 0.49 0.016 0.33 74.22 88.90 94.47 0 N/A
LTH [5] 40.21 72.59 0.51 0.017 0.36 72.54 87.39 93.69 30.00 ✓
SNIP [7] 41.03 74.65 0.51 0.018 0.36 74.80 89.53 94.53 30.00 ✗
Random 38.17 72.77 0.52 0.019 0.38 72.83 83.73 92.33 30.00 ✗
DiSparse (Ours) 42.34 74.55 0.49 0.016 0.33 74.91 89.22 94.62 30.00 ✗

RigL [4] 40.68 74.40 0.51 0.018 0.36 72.47 87.39 93.53 30.00 ✗
DiSparse (Ours) 42.53 74.82 0.49 0.016 0.33 74.62 85.96 93.73 30.00 ✗

IMP [6] 42.39 72.73 0.51 0.016 0.36 72.96 87.80 93.77 30.00 ✓
Random 40.14 74.41 0.52 0.018 0.39 72.38 87.90 93.85 30.00 ✓
DiSparse (Ours) 42.47 74.69 0.50 0.016 0.34 73.32 88.46 94.37 30.00 ✓

Table 3. DiSparse semantic segmentation and depth prediction results on Cityscapes [3] compared to static sparse training, dynamic sparse
training, and pre-trained model pruning methods.



Results at Lower Sparsity Levels

In the Empricial Evaluation Section, we showed the re-
sults of DiSparse and other pruning and sparse training ap-
proaches at high sparsity level(90%). Here, in Table 2, 3,
we show the results at a sparsity of 30%, demonstrating the
superiority of DiSparse at low sparsity level as well. From
the table, we can see that DiSparse is better across all con-
figurations and evaluation metrics. Moreover, we observed
that DiSparse achieved lossless compression performance,
achieving close or even better performance than the baseline
unsparsified model.
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