
Direct Voxel Grid Optimization:
Super-fast Convergence for Radiance Fields Reconstruction

Supplementary material

In Sec. A, we give more implementation details. In Sec. B,
we present additional ablation studies for the important hy-
perparameters that affect the quality and convergence speed.
In Sec. C, we show detailed results of our main ablation
studies presented in the main paper. In Sec. D, we report
our training time breakdown of the coarse and fine stage on
each scene. In Sec. E, we show the detailed quantitative and
qualitative results on each scene. Finally, we derive for the
low-density initialization in Sec. F, and we prove that the
proposed post-activated trilinear interpolation can produce
sharp linear surfaces in Sec. G.

A. Additional implementation details

We choose the same hyperparameters generally for all
scenes in the five datasets.

In the coarse stage, the expected number of voxels is
M (c) = 1003. The activated alpha values are initialized to
be α(init)(c) = 10−6.

In the fine stage, we use M (f) = 1603 voxels. We use a
higher α(init)(f) = 0.01 as the query points in the known free
space are skipped. The shallow MLP layer comprises two
hidden layers with 128 channels. The number of channels of
the feature voxel grid V (feat)(f) is set to D = 12. The number
of frequencies of positional embedding for the query position
x and the viewing direction d are kx = 5, kd = 4. We
progressively scale the fine-stage voxel grid at the checkpoint
pg ckpt being chosen as the 1000th, 2000th, and 3000th
training steps. We use threshold τ (c) = 10−3 to define the
known free space and τ (f) = 10−4 to skip the low-density
query points in unknown space.

We set the sampling step sizes to be half of the voxel sizes,
i.e., δ(c) = 0.5s(c) and δ(f) = 0.5s(f). During training, we ran-
domly shift the query points on a ray by

(
p · δ(·) · d/‖d‖2

)
,

where p is sampled uniformly in [0, 1], and d is the viewing
direction of the ray.

In addition to the photometric loss, we further incorporate
per-point rgb loss and background entropy loss. The per-
point rgb loss directly supervises each of the K ordered

sampled points instead of the accumulated ray:

Lpt rgb =
1

|R|
∑
r∈R

K∑
i=1

(
Tiαi ‖ci − C(r)‖22

)
. (1)

The background entropy loss regularizes the rendered back-
ground probability TK+1 to concentrate on either foreground
or background:

Lbg = −TK+1 log(TK+1)−(1−TK+1) log(1−TK+1) . (2)

Finally, the overall training objective of the coarse stage is

L = wphoto · Lphoto +wpt rgb · Lpt rgb +wbg · Lbg , (3)

where w(c)
photo, w

(c)
pt rgb, w

(c)
bg are the loss weights.

The loss weights are set as follows: w(c)
photo = 1,

w(c)
pt rgb = 10−1, w(c)

bg = 10−2, w(f)
photo = 1, w(f)

pt rgb =

10−2, and w(f)
bg = 10−3. We use the Adam optimizer with a

batch size of 8,192 rays to optimize the coarse and fine scene
representations for 10k and 20k iterations. The base learn-
ing rates are 0.1 for all voxel grids and 10−3 for the MLP.
The exponential learning rate decay is applied such that the
learning rates are downscaled by 0.1 at 20k iterations.

B. Additional ablation experiments
We use the Robot scene to conduct the additional ablation

experiments. In all the additional ablation experiments, the
fine stage are early stopped at 10k iterations. The reported
training times are measured on our machine with a single
RTX2080 Ti GPU.

Effect of the number of voxels. The hyperparameters
M (c) and M (f) define the numbers of voxels in the coarse
stage and the fine stage. In Tab. B1, we show the effect of
different M (·) setups on the final PSNRs and the training
times. We can use more voxels for better quality or use fewer
voxels for faster convergence speed.

Effect of the point sampling step size. In our design, the
voxel sizes s(·) are automatically derived from the hyper-
parameters of the number of voxels M (·). We set the step-
size-to-voxel-size ratio instead of directly assigning the step

1

M (c) M (f) PSNR↑ Training minutes↓
1003 1003 32.65 5.1
1003 1363 34.57 7.0
1003 1603 35.54 7.3

(a) Using fewer voxels in the fine stage results in inferior qualities but faster
training speed.

M (c) M (f) PSNR↑ Training minutes↓
643 1603 34.91 6.1
1003 1603 35.54 7.3
1363 1603 35.84 9.3

(b) The number of voxels in the coarse stage can also affect final results as
the fine stage relies on the coarse geometry optimized in the coarse stage.

Table B1. Effect of the number of voxels in the coarse stage (M (c))
and the fine stage (M (f)). Using more voxels can improve quality
with the cost of more computation and training time.

size for points sampling on rays, i.e., δ(·) = 0.5s(·) means
that the step size is half a voxel size. We show in Tab. B2
that the step sizes are also important hyperparameters for the
speed-quality tradeoff. We can also improve the rendering
quality of a trained model by using a finer step size. For the
sake of simplicity, we leave future work to explore the effect
of different hierarchical point sampling strategies [1, 12, 13].

Step size PSNR↑ sec/frame↓Training Testing

δ(·) = 0.50s(·) δ(·) = 0.50s(·) 35.54 0.64
δ(·) = 0.50s(·) δ(·) = 0.25s(·) 35.72 1.15

(a) We can improve quality by using a finer step size in test-time with the
cost of slower rendering speed. The two results share a trained model and
are only different in the testing step size.

Step size PSNR↑ Training minutes↓
δ(·) = 1.00s(·) 34.17 5.2
δ(·) = 0.75s(·) 34.96 5.9
δ(·) = 0.50s(·) 35.54 7.3
δ(·) = 0.25s(·) 36.01 11.5

(b) Training with finer step size can improve results with the cost of more
computation and training time.

Table B2. Effect of the step size in points sampling. The step
size δ(·) is relative to the voxel size s(·), and we apply the same
step-size-to-voxel-size ratio in our coarse and fine stage. We can
achieve better quality by using a smaller (finer) step size with the
cost of more computation.

Effect of the progressive scaling in the fine stage. In the
fine-stage, we scale the resolution of our voxel grids progres-
sively. We show in Tab. B3 that such a strategy can improve
the training efficiency with a slightly better rendering quality.

Effect of the free space skipping in the fine stage. There
are three models in the fine stage—i) the optimized and

Progressive scaling PSNR↑ Training minutes↓
35.50 11.7

X 35.54 7.3

Table B3. Scaling the grid resolutions progressively in the fine
stage can improve training efficiency with a slightly better quality.

frozen coarse density voxel grid V (density)(c), ii) the finer
density voxel grid V (density)(f), and iii) the model for the
view-dependent color emission. Querying the optimized
V (density)(c) is more efficient than querying the finer density
V (density)(f); querying the view-dependent color emission is
the slowest and computationally expensive. For each query
point, we first query V (density)(c) and ignore the query point if
the activated alpha is below a threshold τ (c) (i.e., the point is
in the known free space). As the training progresses, we can
filter out more points that are in the free space defined by the
“sculpted” V (density)(f). Specifically, we ignore a query point
if the activated alpha from V (density)(f) is below a threshold
τ (f). Thus, we only query for the view-dependent color if the
query point passes the two criteria.

In Tab. B4, we show the effect of the free space skip-
ping strategy. In the case of τ (c) = 0, the coarse voxel grid
V (density)(c) is only used to determine a tighten BBox enclos-
ing the scene. We finally run out of memory (OOM) at the
fine stage if no skipping rule is applied (τ (c) = 0, τ (f) = 0).
When only τ (f) is applied, we can still sculpt out many irrel-
evant query points during the progressive scaling and save
the memory before our voxel grids are scaled to the finest
resolution. The rendering quality is degraded when τ (c) = 0,
which suggests that the imposed priors in the coarse stage
are helpful to the final quality (we cannot apply the low-
density initialization and the free space skipping at the same
time). Finally, we achieve the best rendering quality and
convergence speed when both τ (c) and τ (f) are applied.

Free space skipping PSNR↑ Training minutes↓
τ (c) τ (f)

0 0 - OOM
0 10−4 34.89 7.8

10−3 0 35.54 15.6
10−3 10−4 35.54 7.3

Table B4. Effect of the free space skipping strategy in the fine stage
training.

Ablation studies for the view-dependent color modeling.
Our hybrid representation for the view-dependent color emis-
sions in the fine stage comprises a feature voxel grid and a
shallow MLP. In Tab. B5, we show different strategies and
hyperparameters to model view-dependent colors. Apply-
ing only the shallow MLP results in worse outputs as our
MLP is much “shallower” than the MLP in NeRF—our two
layers with 128 channels versus NeRF’s eight layers with

256 channels. Using only the voxel grid to model view-
invariant diffused colors can converge in much less time,
but the rendering quality is degraded. In NeRF-based scene
reconstruction, spherical harmonic representation [9, 20],
learnable basis [18], or deferred rendering [5] are also shown
to be effective, but we leave the explorations for future work.
We also compare the number of dimensions D of our feature
grid, the number of layers, and the number of channels of the
shallow MLP. Using a larger model leads to better rendering
quality with the cost of more computation.

Colors rep. in fine stage PSNR↑ Training minutes↓
implicit (shallow MLP) 26.57 6.2
explicit (diffused only) 32.15 2.9
hybrid
D MLP layers MLP ch.

12 1 128 35.11 7.0
12 2 128 35.54 7.3
12 3 128 35.70 7.8
12 2 64 35.35 7.0
12 2 192 35.71 7.7
24 2 128 35.90 8.8

Table B5. Different representations and hyperparameters for mod-
eling the view-dependent color emissions.

Effect of the auxiliary losses. We show in Tab. B6 that
incorporating the per-point rgb loss and the background en-
tropy loss added to the main photometric loss can improve
our results. The per-point rgb loss supervises the color emis-
sion of each query points directly instead of the accumulated
color. The background entropy loss enforces the rendered
background probability to concentrate on the background or
foreground. We achieve the best results when adding the two
auxiliary losses.

Per-point rgb loss Background entropy loss PSNR↑
34.84

X 35.37
X 35.53

X X 35.54

Table B6. Effect of the auxiliary losses.

C. Main ablation studies details
In Tab. C1, we show detailed results for the ablation

experiments presented in the main paper. We subsam-
ple two scenes for each dataset to conduct the main abla-
tion experiments—Materials and Mic from Synthetic-NeRF
dataset; Robot and Lifestyle from Synthetic-NSVF dataset;
Character and Statues from BlendedMVS dataset, and Ig-
natius and Truck from Tanks and Temples dataset.

We show that the proposed post-activation significantly
improves our quality. The low-density initialization is shown

to be essential to our method and is an important hyperpa-
rameter. The view-count-based learning rate can slightly
improve the results, and the PSNR without the view-count
prior can degrade up to −1.22 in the worst case.

D. Additional training time details
D.1. Training time comparisons

Mip-NeRF [1] requires similar run-time as NeRF [12]
but achieves much better quality. As a side benefit, Mip-
NeRF can attain NeRF’s PSNR in less time. To compare the
convergence speed with Mip-NeRF, we use the code open-
sourced by the authors (https://github.com/google/mipnerf).
We re-train early-stopped Mip-NeRFs on our machine with
only a single RTX2080 Ti GPU. The comparison is shown
in Tab. D1. The early-stopped Mip-NeRF that is trained for
6 hours achieves an average PSNR of 30.85. On the other
hand, our method is only optimized for about 15 minutes
and achieves an average PSNR of 31.95.

D.2. The detailed training time of our model

We detail our training times on each scene and each stage
in Tab. D2. The coarse stage optimization accounts for
about 15−20% of the overall training time. The per-scene
training times are about less than 15 minutes, except for the
Tanks&Temples [6], which takes just a few more minutes.

E. Per-scene analysis
E.1. Per-scene quantitative results

We report the per-scene quantitative comparisons in
Tab. E1 for Synthetic-NeRF [12] dataset, Tab. E2 for
Synthetic-NSVF [8] dataset, Tab. E3 for BlendedMVS [19]
dataset, Tab. E4 for Tanks&Temples [6] dataset, and
Tab. E5 for DeepVoxels [15] dataset. Our method achieves
comparable results to most of the recent methods, except
the Mip-NeRF [1] and JaxNeRF+ [2]. Moreover, all the
methods after NeRF on the tables take quite a few hours to
train for each scene, while our method only takes about 15
minutes per-scene optimization time as reported in Tab. D2.

E.2. Per-scene qualitative results

We provide more qualitative results in Fig. E2 for
Synthetic-NSVF [8] dataset, Fig. E3 for BlendedMVS [19]
dataset, and Fig. E5 for DeepVoxels [15] dataset. In
Fig. E1, we compare our results with the results pro-
vided by JaxNeRF [2] and PlenOctrees [20] on Synthetic-
NeRF [12] dataset. Both JaxNeRF and PlenOctrees are
stronger baselines than the original NeRF [12]. In Fig. E4,
we also compare our results with PlenOctrees on the
Tanks&Temples [6] dataset. In the qualitative comparisons,
there is no consistent superior method across all the scenes,
which matches the results in quantitative comparisons.

https://github.com/google/mipnerf

Interp. α(init)(c) View.
lr.

Overall Synthetic-NeRF Synthetic-NSVF BlendedMVS Tanks and Temples
Materials Mic Robot Lifestyle Character Statues Ignatius Truck

PSNR↑ ∆avg ∆worst ∆best PSNR↑ ∆ PSNR↑ ∆ PSNR↑ ∆ PSNR↑ ∆ PSNR↑ ∆ PSNR↑ ∆ PSNR↑ ∆ PSNR↑ ∆

post-act. 10−6 X 30.52 - - - 29.57 - 33.20 - 36.36 - 33.79 - 30.31 - 25.62 - 28.16 - 27.15
nearest 10−6 X 27.33 -3.19 -7.50 -0.34 28.17 -1.40 29.05 -4.15 28.86 -7.50 28.85 -4.94 27.28 -3.03 23.69 -1.93 27.82 -0.34 24.95 -2.20
pre-act. 10−6 X 29.58 -0.94 -2.88 -0.14 29.24 -0.33 32.43 -0.77 33.48 -2.88 31.85 -1.94 29.73 -0.58 25.04 -0.58 28.02 -0.14 26.86 -0.29
in-act. 10−6 X 29.28 -1.24 -3.30 0.00 27.34 -2.23 32.47 -0.73 33.06 -3.30 31.77 -2.02 29.74 -0.57 24.84 -0.78 28.16 0.00 26.89 -0.26

post-act.

- X 25.37 -5.15 -9.98 -1.61 27.40 -2.17 30.35 -2.85 26.43 -9.93 23.81 -9.98 24.70 -5.61 19.65 -5.97 26.55 -1.61 24.10 -3.05
10−3 X 26.85 -3.67 -8.40 -0.23 28.96 -0.61 32.97 -0.23 29.09 -7.27 25.39 -8.40 25.12 -5.19 21.22 -4.40 27.23 -0.93 24.86 -2.29
10−4 X 29.01 -1.51 -4.30 +0.05 29.35 -0.22 33.23 +0.03 32.06 -4.30 30.04 -3.75 28.47 -1.84 23.70 -1.92 28.21 +0.05 26.99 -0.16

10−5 X 30.36 -0.16 -1.22 +0.03 29.60 +0.03 33.22 +0.02 36.32 -0.04 33.75 -0.04 30.32 +0.01 24.40 -1.22 28.17 +0.01 27.10 -0.05

10−6 30.35 -0.17 -1.22 +0.02 29.57 0.00 33.22 +0.02 36.33 -0.03 33.74 -0.05 30.33 +0.02 24.40 -1.22 28.06 -0.10 27.12 -0.03

10−7 X 30.43 -0.09 -0.56 +0.20 29.57 0.00 33.15 -0.05 36.56 +0.20 33.50 -0.29 30.40 +0.09 25.06 -0.56 28.12 -0.04 27.07 -0.08

Table C1. We detail the per-scene results of different ablation setups presented in the main paper. We also show their difference (∆) to our
final setting (the first row). The ∆worst highlights the worst-case degradation overall scenes, where most of the settings lead to more than 1
dB degradation in the worst case. The ∆best shows the best case difference, where some settings can slightly improve the results on some
scenes. We highlight the top 3 results of each column in gold , silver , and bronze .

Methods Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

Mip-NeRF [1] (early-stopped)
PSNR↑ 30.85 32.25 24.95 30.66 35.56 32.92 29.28 32.61 28.56

training minutes↓ 361.2 361.1 363.0 360.1 359.0 363.7 360.7 359.3 363.0

Ours PSNR↑ 31.95 34.09 25.44 32.78 36.74 34.64 29.57 33.20 29.13
training minutes↓ 14.2 12.5 12.0 13.8 15.5 13.2 15.4 11.0 20.2

Table D1. We compare the training time with the early-stopped Mip-NeRF, which is a stronger baseline than NeRF. The training time
is measured on our machine with only a single RTX2080 Ti GPU. Our method with about 15 minutes of training time outperforms the
early-stopped Mip-NeRF with 6 hours of training by a large margin.

Stage Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship
Coarse 2.3 2.5 2.4 2.0 2.3 2.3 2.1 2.3 2.3
Fine 11.9 10.1 9.7 11.7 13.2 10.9 13.3 8.7 17.9
All 14.2 12.5 12.0 13.8 15.5 13.2 15.4 11.0 20.2

(a) Training times (minutes) on the eight scenes of Synthetic-NeRF [12] dataset.

Stage Avg. Wineholder Steamtrain Toad Robot Bike Palace Spaceship Lifestyle
Coarse 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Fine 10.7 9.6 12.8 9.8 9.5 10.1 11.2 12.1 10.1
All 13.2 12.1 15.3 12.3 12.0 12.6 13.7 14.6 12.6

(b) Training times (minutes) on the eight scenes of Synthetic-NSVF [8] dataset.

Stage Avg. Jade Fountain Character Statues
Coarse 2.6 2.0 2.7 3.2 2.3
Fine 11.2 11.8 10.6 11.5 11.0
All 13.8 13.8 13.3 14.7 13.2

(c) Training times (minutes) on the four scenes of BlendedMVS [19] dataset.

Stage Avg. Ignatius Truck Barn Cate. Family
Coarse 3.6 3.4 3.6 3.8 3.6 3.4
Fine 14.2 12.4 14.3 18.2 14.1 11.9
All 17.7 15.7 17.8 22.0 17.7 15.3

(d) Training times (minutes) on the five scenes of Tanks&Temples [6] dataset.

Stage Avg. Chair Pedestal Cube Vase
Coarse 2.4 2.5 2.5 2.1 2.5
Fine 11.9 12.8 11.6 11.1 12.2
All 14.3 15.2 14.1 13.2 14.7

(e) Training times (minutes) on the four scenes of DeepVoxels [15] dataset.

Table D2. We report the detail of our per-scene optimization time in minutes measured on our machine with a single RTX2080 Ti GPU.

Methods Avg. Chair Drums Ficus Hotdog Lego Materials Mic Ship

PSNR↑
SRN [16] 22.26 26.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60
NV [10] 26.05 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93
NeRF [12] 31.01 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65
JaxNeRF [2] 31.69 34.08 25.03 30.43 36.92 33.28 29.91 34.53 29.36
JaxNeRF+ [2] 33.00 35.35 25.65 32.77 37.58 35.35 30.29 36.52 30.48
Mip-NeRF [1] 33.09 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41
AutoInt [7] 25.55 25.60 20.78 22.47 32.33 25.09 25.90 28.10 24.15
FastNeRF [3] 29.97 32.32 23.75 27.79 34.72 32.28 28.89 31.77 27.69
SNeRG [5] 30.38 33.24 24.57 29.32 34.33 33.82 27.21 32.60 27.97
KiloNeRF [14] 31.00 - - - - - - - -
PlenOctrees [20] 31.71 34.66 25.31 30.79 36.79 32.95 29.76 33.97 29.42
NSVF [8] 31.75 33.19 25.18 31.23 37.14 32.29 32.68 34.27 27.93
Ours 31.95 34.09 25.44 32.78 36.74 34.64 29.57 33.20 29.13

SSIM↑
SRN [16] 0.846 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757
NV [10] 0.893 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784
NeRF [12] 0.947 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856
JaxNeRF [2] 0.953 0.975 0.925 0.967 0.979 0.968 0.952 0.987 0.868
JaxNeRF+ [2] 0.962 0.982 0.936 0.980 0.983 0.979 0.956 0.991 0.887
Mip-NeRF [1] 0.961 0.981 0.932 0.980 0.982 0.978 0.959 0.991 0.882
AutoInt [7] 0.911 0.928 0.861 0.898 0.974 0.900 0.930 0.948 0.852
FastNeRF [3] 0.941 0.966 0.913 0.954 0.973 0.964 0.947 0.977 0.805
SNeRG [5] 0.950 0.975 0.929 0.967 0.971 0.973 0.938 0.982 0.865
KiloNeRF [14] 0.95 - - - - - - - -
PlenOctrees [20] 0.958 0.981 0.933 0.970 0.982 0.971 0.955 0.987 0.884
NSVF [8] 0.953 0.968 0.931 0.973 0.980 0.960 0.973 0.987 0.854
Ours 0.957 0.977 0.930 0.978 0.980 0.976 0.951 0.983 0.879

LPIPS↓ (Vgg)
SRN [16] 0.170 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299
NV [10] 0.160 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276
NeRF [12] 0.081 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206
JaxNeRF [2] 0.068 0.035 0.085 0.038 0.079 0.040 0.060 0.019 0.185
Mip-NeRF [1] 0.043 0.021 0.065 0.020 0.027 0.021 0.040 0.009 0.138
PlenOctrees [20] 0.053 0.022 0.076 0.038 0.032 0.034 0.059 0.017 0.144
Ours 0.053 0.027 0.077 0.024 0.034 0.028 0.058 0.017 0.161

LPIPS↓ (Alex)

NSVF [8] 0.047 0.043 0.069 0.017 0.025 0.029 0.021 0.010 0.162
Ours 0.035 0.016 0.061 0.015 0.017 0.014 0.026 0.014 0.118

Table E1. Quantitative results on each scene from the Synthetic-NeRF [12] dataset. We highlight the top 3 results of each column under
each metric in gold , silver , and bronze .

C
ha

ir
D

ru
m

s
F

ic
us

H
ot

do
g

Le
go

M
at

er
ia

ls
M

ic
Sh

ip

Ground truth JaxNeRF PlenOctrees Ours

Figure E1. Qualitative comparisons on the on the Synthetic-NeRF [12] dataset. We manually resize, crop, and compress the images.
JaxNeRF and PlenOctrees are both stronger baselines than NeRF. No method produces consistently better fine detail on all scenes. JaxNeRF
recovers the shadow better in Hotdog and no blocking artifact in Materials; PlenOctrees shows better fine texture on Mic and Ship; our
method reconstructs the fine detail of Ficus and Lego better.

Methods Avg. Wineholder Steamtrain Toad Robot Bike Palace Spaceship Lifestyle

PSNR↑
SRN [16] 24.33 20.74 25.49 25.36 22.27 23.76 24.45 27.99 24.58
NV [10] 25.83 21.32 25.31 24.63 24.74 26.65 26.38 29.90 27.68
NeRF [12] 30.81 28.23 30.84 29.42 28.69 31.77 31.76 34.66 31.08
KiloNeRF [14] 33.37 - - - - - - - -
NSVF [8] 35.13 32.04 35.13 33.25 35.24 37.75 34.05 39.00 34.60
Ours 35.08 30.26 36.56 33.10 36.36 38.33 34.49 37.71 33.79

SSIM↑
SRN [16] 0.882 0.850 0.923 0.822 0.904 0.926 0.792 0.945 0.892
NV [10] 0.892 0.828 0.900 0.813 0.927 0.943 0.826 0.956 0.941
NeRF [12] 0.952 0.920 0.966 0.920 0.960 0.970 0.950 0.980 0.946
KiloNeRF [14] 0.97 - - - - - - - -
NSVF [8] 0.979 0.965 0.986 0.968 0.988 0.991 0.969 0.991 0.971
Ours 0.975 0.949 0.989 0.966 0.992 0.991 0.962 0.988 0.965

LPIPS↓ (Vgg)
Ours 0.033 0.055 0.019 0.047 0.013 0.011 0.043 0.019 0.054

LPIPS↓ (Alex)
SRN [16] 0.141 0.224 0.082 0.204 0.120 0.075 0.240 0.061 0.120
NV [10] 0.124 0.204 0.121 0.192 0.096 0.067 0.173 0.056 0.088
NeRF [12] 0.043 0.096 0.031 0.069 0.038 0.019 0.031 0.016 0.047
NSVF [8] 0.015 0.020 0.010 0.032 0.007 0.004 0.018 0.006 0.020
Ours 0.019 0.038 0.010 0.030 0.005 0.004 0.027 0.009 0.027

Table E2. Quantitative results on each scene from the Synthetic-NSVF [8] dataset. We highlight the top 3 results of each column under
each metric in gold , silver , and bronze .

Wineholder Steamtrain Toad Robot Bike Palace Spaceship Lifestyle

Figure E2. The synthesized novel views by our method on the Synthetic-NSVF [8] dataset. We manually resize, crop, and compress the images.

Methods Avg. Jade Fountain Character Statues

PSNR↑
SRN [16] 20.51 18.57 21.04 21.98 20.46
NV [10] 23.03 22.08 22.71 24.10 23.22
NeRF [12] 24.15 21.65 25.59 25.87 23.48
KiloNeRF [14] 27.39 - - - -
NSVF [8] 26.89 26.96 27.73 27.95 24.97
Ours 28.02 27.68 28.48 30.31 25.62

SSIM↑
SRN [16] 0.770 0.715 0.717 0.853 0.794
NV [10] 0.793 0.750 0.762 0.876 0.785
NeRF [12] 0.828 0.750 0.860 0.900 0.800
KiloNeRF [14] 0.92 - - -
NSVF [8] 0.898 0.901 0.913 0.921 0.858
Ours 0.922 0.914 0.926 0.963 0.883

LPIPS↓ (Vgg)
Ours 0.101 0.108 0.115 0.045 0.137

LPIPS↓ (Alex)
SRN [16] 0.294 0.323 0.291 0.208 0.354
NV [10] 0.243 0.292 0.263 0.140 0.277
NeRF [12] 0.192 0.264 0.149 0.149 0.206
NSVF [8] 0.114 0.094 0.113 0.074 0.171
Ours 0.075 0.075 0.086 0.029 0.110

Table E3. Quantitative results on each scene from the BlendedMVS [19] dataset. We highlight the top 3 results of each column under each
metric in gold , silver , and bronze .

Jade Fountain Character Statues

Figure E3. The synthesized novel views by our method on the BlendedMVS [19] dataset. We manually resize, crop, and compress the images.

Methods Avg. Ignatius Truck Barn Caterpillar Family

PSNR↑
SRN [16] 24.10 26.70 22.62 22.44 21.14 27.57
NV [10] 23.70 26.54 21.71 20.82 20.71 28.72
NeRF [12] 25.78 25.43 25.36 24.05 23.75 30.29
JaxNeRF [2] 27.94 27.95 26.66 27.39 25.24 32.47
KiloNeRF [14] 28.41 - - - - -
PlenOctrees [20] 27.99 28.19 26.83 26.80 25.29 32.85
NSVF [8] 28.48 27.91 26.92 27.16 26.44 33.58
Ours 28.41 28.16 27.15 27.01 26.00 33.75

SSIM↑
SRN [16] 0.847 0.920 0.832 0.741 0.834 0.908
NV [10] 0.834 0.922 0.793 0.721 0.819 0.916
NeRF [12] 0.864 0.920 0.860 0.750 0.860 0.932
JaxNeRF [2] 0.904 0.940 0.896 0.842 0.892 0.951
KiloNeRF [14] 0.91 - - - - -
PlenOctrees [20] 0.917 0.948 0.914 0.856 0.907 0.962
NSVF [8] 0.901 0.930 0.895 0.823 0.900 0.954
Ours 0.911 0.944 0.906 0.838 0.906 0.962

LPIPS↓ (Vgg)

JaxNeRF [2] 0.168 0.102 0.173 0.286 0.189 0.092
PlenOctrees [20] 0.131 0.080 0.130 0.226 0.148 0.069
Ours 0.155 0.083 0.160 0.294 0.167 0.070

LPIPS↓ (Alex)
SRN [16] 0.251 0.128 0.266 0.448 0.278 0.134
NV [10] 0.260 0.117 0.312 0.479 0.280 0.111
NeRF [12] 0.198 0.111 0.192 0.395 0.196 0.098
NSVF [8] 0.155 0.106 0.148 0.307 0.141 0.063
Ours 0.148 0.090 0.145 0.290 0.152 0.064

Table E4. Quantitative results on each scene from the Tanks&Temples [6] dataset dataset. We highlight the top 3 results of each column
under each metric in gold , silver , and bronze .

Truck Barn FamilyIgnatius

Ground truth

PlenOctrees

Ours

Caterpillar

Figure E4. Qualitative comparisons on the Tanks&Temples [6] dataset. We manually resize, crop, and compress the images. Our quality is
comparable to PlenOctrees, and no method produces consistent finer detail. Besides, we do not show blocking artifacts.

Methods Avg. Chair Pedestal Cube Vase

PSNR↑
Nearest Neighbor 20.94 20.69 21.49 18.32 23.26
NV [10] 29.62 35.15 36.47 26.48 20.39
DeepVoxels [15] 30.55 33.45 32.35 28.42 27.99
DeepVoxels++ [4] 37.31 40.87 38.93 36.51 32.91
SRN [16] 33.20 36.67 35.91 28.74 31.46
LLFF [11] 34.38 36.11 35.87 32.58 32.97
NeRF [12] 40.15 42.65 41.44 39.19 37.32
IBRNet [17] 42.93 - - - -
Ours 45.83 48.48 48.51 43.77 42.54

SSIM↑
Nearest Neighbor 0.89 0.94 0.87 0.83 0.92
NV [10] 0.929 0.980 0.963 0.916 0.857
DeepVoxels [15] 0.97 0.99 0.97 0.97 0.96
DeepVoxels++ [4] 0.99 0.99 0.98 0.99 0.98
SRN [16] 0.963 0.982 0.957 0.944 0.969
LLFF [11] 0.985 0.992 0.983 0.983 0.983
NeRF [12] 0.991 0.991 0.986 0.996 0.992
IBRNet [17] 0.997 - - - -
Ours 0.998 0.998 0.998 0.998 0.998

LPIPS↓ (Vgg)
SRN [16] 0.073 0.093 0.081 0.074 0.044
NV [10] 0.099 0.096 0.069 0.113 0.117
LLFF [11] 0.048 0.051 0.039 0.064 0.039
NeRF [12] 0.023 0.047 0.024 0.006 0.017
IBRNet [17] 0.009 - - - -
Ours 0.006 0.015 0.003 0.002 0.004

LPIPS↓ (Alex)
Ours 0.002 0.005 0.001 0.001 0.002

Table E5. Quantitative results on each scene from the DeepVoxels [15] dataset. We highlight the top 3 results of each column under each
metric in gold , silver , and bronze .

Chair Pedestal Cube Vase

Figure E5. The synthesized novel views by our method on the DeepVoxels [15] dataset.

F. Derivation of low-density initialization
In this section, we derive the bias term b in the low-density

initialization to make the activated alpha value very close to
zero (i.e., α(init)(c) ≈ 0) at the beginning of our coarse stage
optimization. More specifically, α(init)(c) is a hyperparameter,
and

(
1− α(init)(c)

)
means the decay factor of the accumulated

transmittance for a ray tracing forward a distance of the voxel
size s(c).

Below we omit the stage-specific superscript for simplic-
ity. Let the accumulated distance of s be divided into N
segments, each with a distance of δi, i.e.,

N∑
i=1

δi = s .

Recall that, in practice, we initialize all raw values σ̈ in
V (density)(c) to 0 and thus the initial activated densities σi are
all equal to log (1 + exp(b)). Then, the decay factor of the
accumulated transmittance can be written as

N∏
i=1

(1− αi) =

N∏
i=1

((1− (1− exp(−σiδi))))

=

N∏
i=1

exp(−σiδi)

=

N∏
i=1

exp
(

log (1 + exp(b)) · (−δi)
)

= exp

(
N∑
i=1

(
log (1 + exp(b)) · (−δi)

))

= exp

(
log (1 + exp(b)) ·

N∑
i=1

(−δi)

)
= exp

(
log (1 + exp(b)) · (−s)

)
= (1 + exp(b))

−s
.

We want to find the b such that the decay factor is (1−α(init))
for passing through a distance of the voxel size s. Therefore,
we have

b = log
((

1− α(init))− 1
s − 1

)
,

which is the equation presented in our main paper to impose
the prior of low-density initialization.

G. Derivation of post-activation
By expanding the post-activated trilinear interpolation,

we have

α(post) = 1− exp (−δ log (1 + exp (interp (x,V))))

= 1− (1 + exp (interp (x,V)))
−δ

,
(4)

where δ is a volume rendering related value and is treated
as a constant in later derivation, and interp is the interpo-
lation operation of a spatial point x in grid V . The bias
term b is omitted here for simplicity. The overall activation
maps an interpolant (interp (x,V) ∈ R) into an alpha value
(α(post) ∈ [0, 1]).

We want to prove that such a post-activation can produce
sharp linear surface (decision boundary) in a single grid cell.
Let first prove in the simplest 1D grid and then we generalize
it to 2D grid. The case in 3D grid then can be proven easily
using the derivations in 1D and 2D grid.

G.1. Derivation for a 1D grid cell

In 1D grid, x is a scalar. Without loss of generality, we
assume x = 0 and x = 1 are the left and right bound of the
1D grid cell, respectively. Let a, b ∈ R be the grid values
stored at the cell’s left and right bound. Then Eq. (4) with
1D linear interpolation of the cell can be re-written for this
specific case:

S(x; a, b) = 1− (1 + exp(a(1− x) + bx))
−δ

. (5)

Consider a target function T (x; c) in the form of a shifted
unit step function,

T (x; c) = 1(x− c)

=

{
1 , x > c ,
0 , x ≤ c ,

(6)

where 0 < c < 1 is the position of the target linear surface
(decision boundary) in the 1D grid cell. We only derive for
the occupancy at right-hand side as the opposite direction
can be trivially generalized. Visualization for S and T with
some specific parameters is shown in Fig. G1.

(a) Three examples of S(x; a, b) with
δ = 1

(b) Three examples of T (x; c)

Figure G1. Visualization for some examples of S and T with
different parameter settings.

We show that S(x; a, b) can be made arbitrarily close to
T (x; c). Specifically, given any ε and ∆ satisfying 0 < ε <
1 and 0 < ∆ < min(c, 1 − c), we can find the grid values
a, b such that

|S(x; a, b)− T (x; c)| ≤ ε, ∀|x− c| ≥ ∆ .

As the function S is a monotonically increasing function
bounded in [0, 1], the criterion can then be simplified into

1− S(c+ ∆; a, b) ≤ ε , (7a)
S(c−∆; a, b) ≤ ε . (7b)

By expanding the inequality (7a), we get

1− S(c+ ∆; a, b)

= 1−
(

1− (1 + exp(a(1− (c+ ∆)) + b(c+ ∆))
−δ
)

= (1 + exp(a(1− (c+ ∆)) + b(c+ ∆))
−δ ≤ ε .

We solve the inequality:(
1

1 + exp(a(1− (c+ ∆)) + b(c+ ∆))

)δ
≤ ε

1

1 + exp(a(1− (c+ ∆)) + b(c+ ∆))
≤ ε1/δ

1 + exp(a(1− (c+ ∆)) + b(c+ ∆)) ≥ 1

ε1/δ

exp(a(1− (c+ ∆)) + b(c+ ∆)) ≥ 1

ε1/δ
− 1 .

Finally, we obtain

a(1− (c+ ∆)) + b(c+ ∆) ≥ log

(
1

ε1/δ
− 1

)
. (8)

By applying the same process to the inequality (7b), we get
another inequality:

a(1− (c−∆))+ b(c−∆) ≤ log

(
1

(1− ε)1/δ
− 1

)
. (9)

There are infinite numbers of solutions satisfying the inequal-
ities (8) and (9). Here, we introduce one more constraint to
make the derivation and later extensions simpler:

S(c; a, b) = 0.5 . (10)

From Eq. (5) with this constraint we can then derive the
linear relation between a, b:

b = a
c− 1

c
+

log(2
1
δ − 1)

c
. (11)

Substitute b in the inequality (8), we get

a(1− (c+ ∆)) + b(c+ ∆)

= a(1− (c+ ∆)) +

(
a
c− 1

c
+

log(2
1
δ − 1)

c

)
(c+ ∆)

= a
−∆

c
+ log(2

1
δ − 1)

c+ ∆

c
≥ log

(
1

ε1/δ
− 1

)
.

Similarly, substitute b in the inequality (9), we get

a(1− (c−∆)) + b(c−∆)

= a(1− (c−∆)) +

(
a
c− 1

c
+

log(2
1
δ − 1)

c

)
(c−∆)

= a
∆

c
+ log(2

1
δ − 1)

c−∆

c
≤ log

(
1

(1− ε)1/δ
− 1

)
.

In summary, by adding the extra constraint (10), the inequal-
ity (8) and (9) become{

a ≤ log(2
1
δ − 1) c+∆

∆ − log
(

1
ε1/δ
− 1
)
c
∆

a ≤ log
(

1
(1−ε)1/δ − 1

)
c
∆ − log(2

1
δ − 1) c−∆

∆ ,
(12)

which defines the upper bound of a such that the conditions
on the function S in (7a), (7b), and (10) can all be satisfied.
The tighter upper bound is

a(upper bound) ={
log(2

1
δ − 1) c+∆

∆ − log
(

1
ε1/δ
− 1
)
c
∆ , if δ < 1

log
(

1
(1−ε)1/δ − 1

)
c
∆ − log(2

1
δ − 1) c−∆

∆ , otherwise
,

(13)

where the δ > 0 is the pre-defined step size in volume
rendering and we skip the detailed derivation of Eq. (13)
here.

As a verification, we re-use the examples in Fig. G1b as
the target functions and set the tolerance to ε = 10−4,∆ =
10−2 and the volume rendering related value to δ = 0.5. We
can directly find the grid values a, b using the derivations
given above. We show the derived numbers and the resulting
plot visualization in Fig. G2. It can be seen that the derived
S(x; a, b) can faithfully resemble the target T (x; c).

T (x; c) By Eq. (13) By Eq. (11)
c = 0.1 a ≈ −172.1 b ≈ 1560.1
c = 0.5 a ≈ −865.0 b ≈ 867.2
c = 0.7 a ≈ −1211.4 b ≈ 520.8

(a) The derived S(x; a, b). (b) Some specific T (x; c)

Figure G2. Using the derived upper bound (13) and Eq. (11) to
directly find the grid values a, b that fit the target function T (x; c).

G.2. Derivation for a 2D grid cell

We illustrate two situations that a linear boundary cross-
ing a 2D grid cell in Fig. G3, where Vtl, Vtr, Vbl, Vbr are the
top-left, top-right, bottom-left, and bottom-right values of a
2D grid cell and c(t) is the linear boundary parameterized
by the vertical position t. Let the coordinates of the top-left,
top-right, bottom-left, and bottom-right corners be (0, 0),
(1, 0), (0, 1), and (1, 1), so the top and bottom edges of the
grid cell are on the horizontal lines t = 0 and t = 1, re-
spectively. Without loss of generality, we assume the linear
boundary always intersects the top edge of the 2D grid cell
(i.e., 0 < c(0) < 1) and the left-hand-side [0, c(0)) of the
boundary is free space. We can generalize to other cases via
rotation and flipping, or by negating the grid values. We con-
sider the 2D target function T with respect to the decision
boundary inside the grid cell as a 2D unit step function, and
parameterize it by the vertical coordinate t so that on each
horizontal scan line the target function can be expressed as

T (x(t); c(t)) = 1(x(t)− c(t))

=

{
1 , x(t) > c(t) ,
0 , x(t) ≤ c(t) .

(14)

The goal here is to show that, by choosing suitable values
for Vtl, Vtr, Vbl, Vbr, we are able to approximate the target
function closely enough within the required tolerance using
our post-activation scheme.

(a) Case I: The boundary inter-
sects the top and bottom edge of
the grid.

(b) Case II: The boundary inter-
sects the top and right edge of the
grid.

Figure G3. Two cases of a linear boundary c(t) crossing a 2D grid
cell, where Vlt, Vrt, Vlb, Vrb are the grid values of the cell. Without
loss of generality, we assume the linear boundary always intersects
the top edge of the grid cell, i.e., 0 < c(0) < 1.

Case I: 0 < c(0) < 1 and 0 < c(1) < 1. An example is
illustrated in Fig. G3a, where the linear boundary intersects
the top edge and the bottom edge of a grid cell. The linear
boundary c is a linear function of t defined by c(t) = (1−
t) · c(0) + t · c(1). Based on the results we have derived for
1D, to prove this 2D case we only need to show that Eq. (11)
and Eq. (13) are linear function of c, so that once we use
the two equations to determine Vtl, Vtr for approximating

c(0) and Vbl, Vbr for approximating c(1), we can readily
recover c(t) from c(0) and c(1) on all horizontal scan lines
0 ≤ t ≤ 1. That is, the approximation criteria in Eq. (7a)
and Eq. (7b), where the target surface position is c = c(t),
are automatically satisfied by

a = a(t) = Vtl(1− t) + Vblt ,

b = b(t) = Vtr(1− t) + Vbrt .

Eq. (13) is trivially a linear function of c given δ. By
substituting a in Eq. (11) with a(upper bound) from Eq. (13), we
get

b = log(2
1
δ − 1)

c+ ∆− 1

∆
− log

(
1

ε1/δ
− 1

)
c− 1

∆

when 0 < δ < 1, and

b = log

(
1

(1− ε)1/δ
− 1

)
c− 1

∆
− log(2

1
δ − 1)

c−∆− 1

∆

when 1 ≤ δ. Thus, b is also a linear function of c given δ.

Case II: 0 < c(0) < 1 and 1 < c(1). We assume 0 <
c < 1 in the target function in Eq. (6), but it finally turns
out that the derivations in Sec. G.1 can trivially generalize to
1 < c. Actually, the derivations also work for c < 0 as long
as we modify the signs in inequality (12) to ‘≥’, and the
upper bound in Eq. (13) becomes lower bound. We verify
the results with some examples shown in Fig. G4.

T (x; c) By Eq. (13) By Eq. (11)
c = −0.6 a ≈ 1040.4 b ≈ 2772.6
c = 1.3 a ≈ −2250.8 b ≈ −518.6
c = 1.5 a ≈ −2597.2 b ≈ −865.0

(a) The derived S(x; a, b). (b) Some specific T (x; c).

Figure G4. The derivation in Sec. G.1 is also applicable to extrapo-
lation (c < 0 or c > 1) with minor modifications.

In summary, the derivation in Sec. G.1 also works for
extrapolation with minor modifications and the derivation in
Case I is directly applicable for Case II.

As a verification, we construct two examples in Fig. G5.
The volume rendering step size is set to δ = 0.5, the error
bound is set to ε = 10−4, and we show two results with
tolerance ∆ = 0.20 and ∆ = 0.05. For each target boundary,
we first evaluate c(0) and c(1). The values of Vtl, Vbl can
then be derived from Eq. (13) and the values of Vtr, Vbr can
be derived from Eq. (11).

(a) Target boundary
c(t) = 0.5·t+0.3.

ε 10−4 10−4

∆ 0.20 0.05
Vtl −24.9 −518.6
Vtr 61.7 1213.6
Vbl −68.2 −1384.7
Vbr 18.4 347.5

(b) Target boundary
c(t) = 1.1·t+0.2.

ε 10−4 10−4

∆ 0.20 0.05
Vtl −16.2 −345.3
Vtr 70.4 1386.9
Vbl −111.5 −2250.8
Vbr −24.9 −518.6

Figure G5. Using the extended 2D derivation to directly find the
grid values Vtl, Vtr, Vbl, Vbr that fit the target boundary c(t) under
the required error bound ε and tolerance ∆.

G.3. Derivation for a 3D grid cell

Similar to the proof for 2D in Sec. G.2, we can assume
that the 3D linear surface c(t, u) intersects the top face of
a 3D grid cell, as illustrated in Fig. G6. Without loss of
generality, we assume the surface c(t, u) intersects the hori-
zontal planes u = 0 and u = 1, and the left-hand-side of the
surface,

{[t, u, v] | 0 ≤ t ≤ 1, 0 ≤ u ≤ 1, 0 ≤ v ≤ s(t, u)} ,

is free space. The linear surface is c(t, u) = (1−u)·c(t, 0)+
u ·c(t, 1). We can use the results in Sec. G.2 to determine the
grid values of the top four corners with c(t, 0) and the values
of the bottom four corners with c(t, 1). The linear boundary
at every horizontal slice 0 ≤ u ≤ 1 can be automatically
satisfied, as we have shown in Sec. G.2.

G.4. Future extensions

Beyond linear surface (decision boundary). We only
prove that the alpha field by post-activated interpolation can
be arbitrarily close to a linear surface. We show in Fig. G7
that we can further tune the tolerances at the top edge and bot-
tom edge of a grid to produce sharp and non-linear surfaces.

Figure G6. A linear surface c(t, u) crossing a 3D grid cells. With-
out loss of generality, we assume the surface intersects with two
horizontals planes, u = 0 and u = 1, which the top face and the
bottom face of a 3D grid cell aligned with.

∆(t) = 1e−3 ∆(t) = 1e−3 ∆(t) = 1e−3

∆(b) = 5e−4 ∆(b) = 5e−3 ∆(b) = 5e−2

∆(t) = 1e−2 ∆(t) = 1e−2 ∆(t) = 1e−2

∆(b) = 5e−4 ∆(b) = 5e−3 ∆(b) = 5e−2

∆(t) = 1e−1 ∆(t) = 1e−1 ∆(t) = 1e−1

∆(b) = 5e−4 ∆(b) = 5e−3 ∆(b) = 5e−2

Figure G7. We fix c(0) = 0.2, c(1) = 0.9, δ = 0.5, ε = 10−4 but
use different tolerances for the top edge (∆(t)) and the bottom edge
(∆(b)). Following the same procedure as in Sec. G.2 to determine
the grid values, we can obtain a sharp non-linear surface.

Extending the proof or the capability of post-activation in
future work could be helpful to geometry modeling.

Closed form solution when 3D available. In this work,
we only consider the same input setup as NeRF, where only
2D observations and camera poses are available. In cases
that the 3D model of the scene is available, an algorithm
to convert the 3D model to our post-activated density voxel
grid can be helpful. Our representation is directly compatible
with gradient-based optimization and volume rendering to
support follow-up applications, while 3D in other formats
like mesh or point cloud may need more effort. We believe
our derivations are useful for future work to develop a closed-
form solution to convert the 3D in other formats into our
representation.

References
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neural
radiance fields. In ICCV, 2021. 2, 3, 4, 5

[2] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan.
JaxNeRF: an efficient JAX implementation of NeRF, 2020.
3, 5, 9

[3] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien P. C. Valentin. Fastnerf: High-fidelity
neural rendering at 200fps. In ICCV, 2021. 5

[4] Tong He, John P. Collomosse, Hailin Jin, and Stefano Soatto.
Deepvoxels++: Enhancing the fidelity of novel view synthesis
from 3d voxel embeddings. In Hiroshi Ishikawa, Cheng-Lin
Liu, Tomás Pajdla, and Jianbo Shi, editors, ACCV, 2020. 10

[5] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul E. Debevec. Baking neural
radiance fields for real-time view synthesis. In ICCV, 2021.
3, 5

[6] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: benchmarking large-scale scene
reconstruction. ACM Trans. Graph., 2017. 3, 4, 9

[7] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural volume render-
ing. In CVPR, 2021. 5

[8] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In NeurIPS,
2020. 3, 4, 5, 7, 8, 9

[9] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng
Wang, Christian Theobalt, Xiaowei Zhou, and Wenping Wang.
Neural rays for occlusion-aware image-based rendering. arxiv
CS.CV 2107.13421, 2021. 3

[10] Stephen Lombardi, Tomas Simon, Jason M. Saragih, Gabriel
Schwartz, Andreas M. Lehrmann, and Yaser Sheikh. Neural
volumes: learning dynamic renderable volumes from images.
ACM Trans. Graph., 2019. 5, 7, 8, 9, 10

[11] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: practical view syn-
thesis with prescriptive sampling guidelines. ACM Trans.
Graph., 2019. 10

[12] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 2, 3, 4, 5, 6, 7, 8, 9, 10

[13] Michael Oechsle, Songyou Peng, and Andreas Geiger.
UNISURF: unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In ICCV, 2021. 2

[14] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In ICCV, 2021. 5, 7, 8, 9

[15] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
voxels: Learning persistent 3d feature embeddings. In CVPR,
2019. 3, 4, 10

[16] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.
Scene representation networks: Continuous 3d-structure-
aware neural scene representations. In NeurIPS, 2019. 5,
7, 8, 9, 10

[17] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P. Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas A. Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In CVPR, 2021.
10

[18] Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon
Yenphraphai, and Supasorn Suwajanakorn. Nex: Real-time
view synthesis with neural basis expansion. In CVPR, 2021.
3

[19] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren,
Lei Zhou, Tian Fang, and Long Quan. Blendedmvs: A large-
scale dataset for generalized multi-view stereo networks. In
CVPR, 2020. 3, 4, 8

[20] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. In ICCV, 2021. 3, 5, 9

	. Additional implementation details
	. Additional ablation experiments
	. Main ablation studies details
	. Additional training time details
	. Training time comparisons
	. The detailed training time of our model

	. Per-scene analysis
	. Per-scene quantitative results
	. Per-scene qualitative results

	. Derivation of low-density initialization
	. Derivation of post-activation
	. Derivation for a 1D grid cell
	. Derivation for a 2D grid cell
	. Derivation for a 3D grid cell
	. Future extensions

