Exploring Effective Data for Surrogate Training Towards Black-box Attack
(Appendix)

Xuxiang Sun Gong Cheng Hongda Li Lei Pei Junwei Han
School of Automation, Northwestern Polytechnical University, Xi’an, China
{xuxiangsun,hongda,peilei}@mail.nwpu.edu.cn {gcheng,jhan}@nwpu.edu.cn

A. Extended Description for Our Method

In this section, we offer our readers the extended description for the proposed loss L_{div}, i.e., when the batch-size B of the input noise less than $C - 1$, where C is the class number of the dataset on which the victim model is deployed.

When it comes to $B < C - 1$, it is obvious that we can not explore all the class regions by those samples. In this scenario, a less-than-ideal alternative is that we can make those samples as diverse as possible. That is to say, we can focus on pushing them towards the decision boundary of their own class and the other B classes. Hence, the optimization function L_{div} then becomes Eq. (1), as shown in the following:

$$L_{\text{div}} = \frac{1}{C} \sum_{k} \text{STD} \left[\sum_{j} \text{Norm} (g(S(x_k^j))_{\phi_k}) \right].$$ \tag{1}

Here, $g(\cdot)_{\phi_k}$ represents calculating the softmax outputs of \cdot, where the entries with their index fall into the set of ϕ_k are excepted. The expression for ϕ_k is shown below:

$$\phi_k = \text{Sort}_{C-B-1} \{ \text{Norm} \left(\sum_{j} S(x_k^j) \right) \} \cup \{ k \},$$ \tag{2}

where $\text{Sort}_{C-B-1} \{ \cdot \}$ denotes taking the first $C - B - 1$ entries of \cdot in ascending order and $S(\cdot)_k$ represents taking all the entries of $S(\cdot)$, of which the k-th entry is excepted.

B. Evaluation Metrics

In this section, the calculation of the two evaluation metrics will be further introduced. Briefly speaking, we follow the protocol of the state-of-the-art [8].

First, let us denote the adversarial perturbations in the corresponding adversarial examples are ϵ. The adversarial examples with $|\epsilon| < 8$ are seen as the valid ones. Then, the Attack Success Rate (ASR) is calculated by n/m. Here, n is the number of valid adversarial examples that can fool the victim model. For ASRuntar, m is the number of the images that are classified correctly by the victim model, and n is the number of the valid adversarial examples that can be classified to any other class except its original one by the victim model. For ASRtar, m is the number of the images that are not classified to the specific target labels, and n is the number of the valid adversarial examples that can be classified to the specific target labels by the victim model.

C. Extended Results

C.1. Extended Curves on CIFAR-100

Implementation Details. For the experiments in this part, all the compared methods are trained for 75 epochs with the default learning rates on each dataset. The learning rates for all the methods are fixed during training. Besides, for the experiments on CIFAR-10 dataset [3], we use VGG-16 [7] as the surrogate model and ResNet-18 [2] as the victim model. While for CIFAR-100 dataset [3], both the surrogate model and the victim model are VGG-19 [7]. Moreover, the...
Besides, it is astonishing that using GAN directly without boundary loss failed to provide sustainable improvement. After using sarsil loss [1] to train the proposed generator and discriminator, we observe an impressive impact on the performance of both our method and Knockoff [5], we think the reasons for the two cases not much sensitive to the size of the proxy data. It is worth noting that the distribution built by the proxy images indeed contains a large proportion of the samples that are effective for surrogate training. Even if there is no specific constraint, the generator can still find those samples. However, when the boundary loss of our approach get increased abnormally, the attack performance will decrease sharply.

Based on this observation, as we mentioned in the main paper, it is reasonable to make a conjecture that samples lay close to the decision boundary may be effective relatively. In addition, the distribution built by the proxy images indeed contains a large proportion of the samples that are effective for surrogate training. Even if there is no specific constraint, the generator can still find those samples. However, considering the inherently instability [1, 6] of GAN, we can not just rely on it to search the effective samples for surrogate training. To this end, our approach adds two losses to search the specified samples that are effective for efficient surrogate training.

C.2. Data Ablation Studies on CIFAR-100

Here, we report the data ablation studies on CIFAR-100 [3] with the two proxy datasets. The victim model here is ResNet-50 [2]. From Fig. 2 we can find that our method is not much sensitive to the size of the proxy data. It is worth emphasizing that although the size of proxy images has no impressive impact on the performance of both our method and Knockoff [5], we think the reasons for the two cases are quite different. For our method, we argue this can be
attributed to the distributions established by proxy images with the size between 1k to 5k are not much different. While for Knockoff [5], we believe that the reason is the underfitting problem still dominates, i.e., the proxy images with a size lower than 5k are unavailing that can not cause significant improvement. As a result, our approach can make full use of the proxy images without the risk of underfitting due to insufficient data.

C.3. Visualizations of the Synthesized Data

In the end, we provide the visualization of the data synthesized by DaST [11] and our method, respectively. For our method, the synthesized data via two proxy datasets are all exhibited. Here, Fig. 3 and Fig. 4 offer the visualizations on two typical victim datasets, i.e., MNIST [4] and CIFAR-10 [3] dataset. Looking through Fig. 3 and Fig. 4, we can see that the intra-class diversity of the synthesized data via our method is generally larger than those via DaST. Besides, associating the Kernel Density Estimation curves of the main paper with Fig. 4, we can find that the inter-class similarity of the synthesized data via our method is large, images belonging to different classes still be visually distinguishable and stylistically similar. That is, the synthesized samples are label-controllable with large inter-class similarity, as expected. While for DaST, the label-controllable property is relatively poor, i.e., samples belonging to different classes are almost visually identical. Moreover, since we utilize a discriminator to limit the searching space of the generator to the distribution established by the proxy images, it is obvious that the synthesized samples own high semantic similarity with the proxy dataset. Thus, according to the results of peer comparison, we think that the semantic content of the synthesized data may be unimportant for the surrogate training. In turn, the class-specific properties (e.g., the inter-class similarity and the intra-class diversity) of those synthesized samples may provide sound development.

References

