
Global-Aware Registration of Less-Overlap RGB-D Scans
Supplementary Material

Che Sun, Yunde Jia, Yi Guo, and Yuwei Wu*

Beijing Laboratory of Intelligent Information Technology, School of Computer Science,
Beijing Institute of Technology, Beijing, 100081, China.

{sunche,jiayunde,guoyi,wuyuwei}@bit.edu.cn

1. Scene Inference Network

We construct the panorama Ip via a scene inference net-
work that includes two scan completion sub-networks and a
panorama inference sub-network.

1.1. Network Structure

Scan Completion Sub-Network. The architecture of the
scan completion sub-network is illustrated in Fig. 1. We fol-
low the work of Yang et al. [4] to construct the sub-network
and pre-process the scans to obtain their feature representa-
tions. The inputs are feature representations of two RGB-D
scans I1 and I2, including specifying color, depth, and nor-
mal. Three independent encoders are first used to encode
them into corresponding feature maps. The feature maps
are then concatenated and fed into several convolutional and
de-convolutional layers for encoding and decoding. Finally,
five independent decoders are used to generate five feature
representations of extrapolated scans.
Panorama Inference Sub-Network. The panorama infer-
ence sub-network has a similar encoder-decoder structure.
The architecture of the encoder is the same as that of the
scan completion sub-network (i.e., from C1 1, C1 2, C1 3
to C9 in Fig. 1). Before decoding, two feature transforma-
tion modules are used to transform the extrapolated scans to
the panorama at feature levels with extra inputs of transfor-
mation matrices T1, T2 ∈ SE(3), which is shown in Fig. 2.
The transformed features of two scans are concatenated at
the channel dimension for decoding, obtaining the repre-
sentation of the panorama in a decoder. The structure of
the decoder is the same as that of the scan completion sub-
network (i.e., from D9 to D1 1, D1 2, D1 3, D1 4, D1 5
in Fig. 1).

1.2. Training

The scene inference network is trained via a supervised
regression loss function. To this end, we need two input

*Corresponding author

scans I1, I2, the ground truths of both the extrapolation
scans I∗1, I

∗
2 and the panorama I∗p, as well as the transfor-

mation matrices T1, T2 for training.
The representations of I1, I2, I∗1 and I∗2 are directly ob-

tained from the datasets pre-processed by Yang et al. [4]. I∗p
is rendered from the 3D scenes, where its pose (i.e., cam-
era external matrix) is determined according to the poses of
I1 and I2. We expect to align I1 and I2 with Ip through
symmetrical transformations (i.e., T −11 = T2) for sufficient
coverage. Specifically, we assume that the pose matrices of
I1 and I2 are PW

1 and PW
2 , respectively, at the world coor-

dinate system. The matrices are

PW
1 =

[
RW

1 tW1
0> 1

]
, PW

2 =

[
RW

2 tW2
0> 1

]
, (1)

where RW
1 ,R

W
2 are rotation matrices and tW1 , t

W
2 are trans-

lation vectors at the world coordinate system. The pose ma-
trix PW

p of the panorama is computed by

rW1 , r
W
2 = fm2q(R

W
1), fm2q(R

W
2),

rWp = (rW1 + rW2)/2,

RW
p = fq2m(r

W
p),

tWp = (RW
p +RW

1)((RW
p)−1tW2 + (RW

1)−1tW1),

PW
p =

[
RW

p tWp
0> 1

]
,

(2)

where fm2q(·) denote converting rotation matrices RW
1

and RW
2 into rotation quaternion vectors rW1 and rW2 , and

fq2m(·) denote converting the vector rWp into the matrice
RW

p . The ground-truth transformations matrices T1, T2 are
computed by

T1 = PpP
−1
1 , T2 = PpP

−1
2 . (3)

We train the scene inference network in an end-to-end
manner, and the training batch is set to 4. We use the

1

C
Concat

Figure 1. The architecture of the scan completion sub-network. In each block, the first line denotes the layer’s name (e.g., C1 1, D1 1,
etc.), where C and D indicate the convolutional layer and de-convolutional layer, respectively. The second line denotes the size of the
convolutional kernels (e.g., 3× 3 and 4× 4), and the third line represents the number of kernels (e.g., 32, 64, etc.).

ADAM optimizer with a 0.001 learning rate for 200k iter-
ations. During training, we add some noise to the transfor-
mation matrices T1, T2, and use them to transform the scans
at feature levels.

2. Reinforcement Learning

2.1. Theoretical Analysis

The original objective function in Eq. (2) in the main
submission is

min
T1,T2

∑
m1∈C1

‖I1(m1)− I(0)p (mp)‖22

+
∑

m2∈C2

‖I2(m2)− I(0)p (mp)‖22,

s.t., [Mp; 1] = T1[M1; 1], [Mp; 1] = T2[M2; 1].

(4)

Without considering uncertainty maps U, the reward func-
tion in Eq. (4) in the main submission is

rn =
1

1 + dn
,

dn =
∑

m
(n)
1 ∈C1

‖F(n)
1 (m

(n)
1)− F(n)

p (m
(n)
1)‖22

+
∑

m
(n)
2 ∈C2

‖F(n)
2 (m

(n)
2)− F(n)

p (m
(n)
2)‖22,

(5)

where the RGB values I1(·), I2(·) and I
(0)
p (·) are replaced

with the robust feature representations F
(n)
1 (·),F(n)

2 (·) and
F

(n)
p (·), respectively.
The supervised constraint in Eq. (7) and Eq. (8) in the

Dot-Products

CConcat

Figure 2. Illustration of the feature transformation. The trans-
form matrix is converted into a vector (i.e., the concatenation of
the rotation quaternion and translation vector), and is encoded by
three fully-connected layers (F T1, F T2, F T3). The feature
maps of the C9 layer are also encoded by two convolutional layers
(C T1, C T2) and one max-pooling layer (MaxPool). The two
encoded features are concatenated to calculate the feature trans-
formation via another two fully-connected layers (F T4, F T5).
We perform dot-products between the feature transformation and
all channel vectors of the feature maps of the C9 layer, generating
transformed feature maps.

main submission are

Ls = ‖(R(n)
1)−1(R

(n)
1)∗ − 1‖2F + ‖t(n)1 − (t

(n)
1)∗‖22

+ ‖(R(n)
2)−1(R

(n)
2)∗ − 1‖2F + ‖t(n)2 − (t

(n)
2)∗‖22,

(6)

where,[
(R

(n)
1)∗ (t

(n)
1)∗

0> 1

]
= (T1)∗

(
n−1∏
i=1

T (n−i)
1

)−1

,

[
(R

(n)
2)∗ (t

(n)
2)∗

0> 1

]
= (T2)∗

(
n−1∏
i=1

T (n−i)
2

)−1

.

(7)

Theorem 1 When the optimal outputs T ∗1 , T ∗2 of the rein-
forcement learning satisfy both the supervised constraint in
Eq. (6) and the maximum expected rewards in Eq. (5), they
are exactly the solutions in Eq. (4)1.

Proof All the sequential actions are used to construct the
optimal transformation matrices

T ∗1 =

n−1∏
i=1

T (n−i)
1 , T ∗2 =

n−1∏
i=1

T (n−i)
2 . (8)

We use the actions to transform scans I1 and I2 into I
(n)
1 and

I
(n)
2 at the n-th step, respectively, and the 3D coordinates

are obtained by

[M
(n)
1 ; 1] = T ∗1 [M1; 1], [M

(n)
2 ; 1] = T ∗1 [M2; 1]. (9)

The transformed scans I(n)1 and I
(n)
2 satisfy

F
(n)
1 (m

(n)
1) = F1(m1), F

(n)
2 (m

(n)
2) = F2(m2). (10)

The supervised constraint in Eq. (6) enforces the scans
I1 and I2 to align with the panorama Ip at the n-th step.
The optimal outputs mean the complete alignments, so the
3D/2D coordinates at the n-th step satisfy

M
(n)
1 = M

(n)
2 = M(n)

p ,m
(n)
1 = m

(n)
2 = m(n)

p . (11)

We assume that the position of the panorama is fixed during
the reinforcement learning, so the coordinates are also fixed:

M
(n)
1 = M

(n)
2 = M(n)

p = Mp,

m
(n)
1 = m

(n)
2 = m(n)

p = mp.
(12)

Therefore, the following feature representations are the
same:

F(n)
p (m

(n)
1) = F(n)

p (m
(n)
2) = F(n)

p (m(n)
p) = F(n)

p (mp).
(13)

Based on Eq. (9) and Eq. (12) , we obtain the same con-
straint in the original objective function in Eq. (4)

[Mp; 1] = T ∗1 [M1; 1], [Mp; 1] = T ∗2 [M2; 1]. (14)

We substitute Eq. (13) and Eq. (10) into the reward function
in Eq. (5):

dn =
∑

m1∈C1

‖F1(m1)− F(n)
p (mp)‖22

+
∑

m2∈C2

‖F2(m2)− F(n)
p (mp)‖22.

(15)

1Both the uncertainty maps U and the panorama refinement are not
considered in the theorem. I(0)p and I

(n)
p are treated equally.

oI oooIIIIIIIIIIII

CConcat

()

()

()
()

()

()

()
()

Figure 3. Illustration of the policy network fπ .

Maximizing the reward means minimizing the distance dN
in Eq. (15). This is equivalent to minimizing the error in
the original objective function in Eq. (4) without consid-
ering the refinement of the panorama (i.e., I(0)p = I

(n)
p).

Therefore, the sequential actions T ∗1 , T ∗2 are also the opti-
mal transformation matrices in Eq. (4).

�

2.2. Policy Network

We use a policy network fπ with a pre-trained embed-
ding network eψ as the backbone to predict the action.
We follow the work of Wang et al. [3] to construct the
embedding network eψ by using a Siamese DGCNN to
generate point embeddings. The embeddings are fed
into a cascaded two-branch sub-network to predict dis-
tributions of the disentangled rotation p(R

(n)
1 |sn) and

p(R
(n)
2 |sn) as well as the translation p(t

(n)
1 |sn) and

p(t
(n)
2 |sn), as is shown in Fig. 3. A value approximator for

optimization is also produced from the two concatenated
branch representations, which shares the same parame-
ters. The architecture of the sub-network for computing
p(R

(n)
1 |sn) and p(R

(n)
2 |sn) is FC(1024,256,ReLU)-

FC(256,128,ReLU)-FC(128,128,ReLU)-FC(128,4,None).
The architecture of the sub-network for computing
p(t

(n)
1 |sn) and p(t

(n)
2 |sn) is FC(1024,256,ReLU)-

FC(256,128,ReLU)-FC(128,128,ReLU)-FC(128,3,None).
The architecture of the sub-network for computing the
value is FC(512,128,ReLU)-FC(128,1,None). FC(a, b, f)
means a fully-connected layer with a trainable weight
matrix W ∈ Ra×b and an activation function f . Each layer
is followed by a layer normalization except for the last
layer.

2.3. Proximal Policy Optimization

The policy network fπ is pre-trained and fine-tuned in a
supervised manner by using the loss functions in Eq. (6) and
Eq.(7), respectively, in the main submission. Besides, we
also employ the proximal policy optimization algorithm [2]
to optimize fπ to acquire the maximum reward.

We compute the action probabilities pπ(an|sn) =

{p(R(n)
1 |sn), p(R

(n)
2 |sn), p(t

(n)
1 |sn), p(t

(n)
2 |sn)} and esti-

mate the value Vπ(sn) from the policy network fπ at each
time step n. The self-transformation matrices are samples
from pπ(an|sn). We use pπ(an|sn) to represent the current
output distributions, and use pπold

(an|sn) to represent the
output distributions when an was sampled. The expected
cumulative reward can be used to construct the value func-
tion V (sn) = Ean,sn+1···[

∑∞
j=1 γjrj], and we use Vπ(sn)

to approximate the value. The clipped surrogate objective
is

Lc = Ê
[
min

(
ξnÂn, clip(ξn, 1− ε, 1 + ε)Ân

)]
, (16)

where

ξn =
pπ(an|sn)
pπold

(an|sn)
. (17)

Ân is the advantage estimator:

Ân =− V (sn) + rn + γrn+1 + · · ·
+ γN−n+1rN−1 + γN−nV (sn).

(18)

The value loss function is

Lv = (Vπ(sn)− Vtarg)2 , (19)

where

Vtarg = rn + γrn+1 + · · ·+ γN−nVπold
(sn). (20)

The entropy regularization term for exploration is

Le = pπ log pπ. (21)

The on-policy update loss of the PPO algorithm is

Lr = Lc + λvLv + λeLe. (22)

3. Additional Evaluations
3.1. Transformation Matrices

Besides the evaluation of transformation errors, we also
calculate the success rate to evaluate our method on es-
timating the transformation matrices between less-overlap
(≤ 10%) RGB-D scans. If the rotation error or translation
error of a transformed scan is below a certain threshold, we
treat the transformation as a success. Tab. 1 shows the suc-
cess rates under the thresholds of 3◦, 10◦ and 45◦ rotation
errors as well as 0.1m, 0.25m and 0.5m translation errors,
respectively. The success rates demonstrate although our
method performs better than the state-of-the-art methods on
aligning less-overlap RGB-D scans, this task still needs to
be studied for further improvements.

Rotation (%) Trans. (%)
3◦ 10◦ 45◦ 0.1m0.25m0.5m

ScanComp. [4] 0.9 8.8 45.3 0.4 2.3 18.7
HybridRep. [5] 1.1 9.5 50.4 0.9 3.0 22.6

Ours 1.213.277.1 0.8 4.3 29.5

Table 1. The success rates with different rotation and translation
thresholds on the ScanNet dataset.

True-Positve Rate (%) Recall (%)
top-30 top-50 top-100 top-30 top-50 top-100

ScanComp. [4] 42.6 42.2 41.8 18.4 33.8 57.0
HybridRep. [5] 47.9 47.8 46.9 16.7 35.0 60.9

Ours 65.9 65.6 65.0 24.5 40.6 80.8

Table 2. Comparisons of the true-positive rate and recall of corre-
spondences on the ScanNet dataset.

Top-50 Precision (%) Top-100 Precision (%)
5% 10% 15% 5% 10% 15%

ScanComp. [4] 6.6 15.3 25.8 7.7 17.2 31.3
HybridRep. [5] 7.0 18.2 24.5 8.5 20.6 33.4

Ours 14.330.5 47.4 14.130.0 45.5

Table 3. The top-50 and top-100 precision rates on the ScanNet
dataset. The threshold is set to 5%, 10%, 15% of the scene size
that is defined as the maximum distance between 3D positions.

3.2. Point Correspondences

The true-positive rate and recall of point correspon-
dences on the ScanNet dataset are shown in Tab. 2, where
two scans have less than 10% overlap regions. We further
compare the precision rate by using different thresholds in-
stead of using the fixed threshold proposed in the main sub-
mission. The top-50 and top-100 precision rates are shown
in Tab. 3. The threshold is set to 5%, 10%, and 15% of
the scene size that is the maximum distance among all 3D
points in the scene.

3.3. Visualization Results

Fig. 4 exhibits several examples of Mellado et al. [1],
Yang et al. [4], and Yang et al. [5] for estimating transfor-
mation matrices, where the point clouds of the first scans
(green) are transformed into the second scans (red) by us-
ing the transformation matrices T .

We also visualize correspondences in Fig. 5. The thresh-
old is set to 0.5m, and green lines indicate correct corre-
spondences and red lines denote incorrect ones. The corre-
spondences are established on the noisy extrapolated scans,
but here we show them on the ground-truth scans for better
visualization.

Method Speed (pps) Rotation(◦) Trans.(m)
ScanComp. [4] 0.56 78.95 1.60
HybridRep. [5] 2.44 44.91 1.00

Ours 1.32 33.73 0.61

Table 4. Comparisons of the speed and relative errors on the Scan-
Net dataset. “pps” means pairs per second.

3.4. Analysis of Markov Reward Process

As is shown in Tab. 4, we compare the inference speed
of our method with existing state-of-the-art methods [4, 5].
The inference speed is measured using a single NVIDIA
RTX2080Ti GPU and an Intel i7-7800X CPU. We find that
the speed of our method (1.32pps) is slightly slower than
that (2.44pps) of [5], and faster than that (0.56pps) of [4].
Our iterative matching method takes more time, but is more
efficient for alignments. A remained problem is that none of
the existing methods (including ours) can achieve the real-
time matching, which directs our future work towards real-
time performances.

References
[1] Nicolas Mellado, Dror Aiger, and N. Mitra. Super 4pcs fast

global pointcloud registration via smart indexing. Computer
Graphics Forum, 33(5):205–215, 2014. 4, 6

[2] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. ArXiv, abs/1707.06347, 2017. 3

[3] Yue Wang, Yongbin Sun, Z. Liu, S. Sarma, M. Bronstein, and
J. Solomon. Dynamic graph cnn for learning on point clouds.
ACM Transactions on Graphics, 38:1 – 12, 2019. 3

[4] Zhenpei Yang, Jeffrey Z Pan, Linjie Luo, Xiaowei Zhou, Kris-
ten Grauman, and Qixing Huang. Extreme relative pose es-
timation for rgb-d scans via scene completion. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4531–4540, 2019. 1, 4, 5, 6, 7

[5] Zhenpei Yang, Siming Yan, and Qixing Huang. Extreme rel-
ative pose network under hybrid representations. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2455–2464, 2020. 4, 5, 6, 7

Mellado et al. [1] Yang et al. [4] Yang et al. [5] Ours GT Points GT Color

Figure 4. Qualitative results of Mellado et al. [1], Yang et al. [4], Yang et al. [5] and ours.

Input
Scans

Extrapolated
Scans

Ours

Figure 5. Visualization results of our method and baseline methods. From left to right, we show the input RGB-D scans, the extrapolated
scans, as well as the correspondence results of Yang et al. [4], Yang et al. [5] and ours.

