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1. Video Demo
We provide a video demo here to demonstrate the per-

formance of our method for image-based rendering (IBR)
on sparse scene geometry. Three scenes are selected, Truck,
Bike, Statue from three datasets, Tanks and Temples, Free
View Synthesis and our own Surround dataset respectively.
We compare our method with four state-of-the-art (SOTA)
IBR methods, FVS [3], SVS [4], EVS [1] and SVNVS [5].
Red boxes in the video indicates failed cases of these meth-
ods. We also provide illustration for sparse depth maps and
corresponding complete depth maps from geometry recov-
ery (GR) stage in the bottom of our results. It clearly shows
the effect of GR stage, which is the main reason why our
method is robust to sparse scene geometry.

2. Comparisons and Results
In this section, we compare four SOTA IBR methods

with our method and show more quantitative and qualita-
tive results.

2.1. Methods comparisons

Four SOTA IBR methods are compared with our method,
FVS [3], SVS [4], EVS [1] and SVNVS [5]. FVS [3] and
SVS [4] use a large amount of views to reconstruct a 3D
mesh representation and render dense depth maps. They
assume dense real views are available and spend lots of
time offline to conduct the 3D reconstruction process. Their
methods perform well in such a setting but are not robust
to sparse input. When the number of available views re-
duces, the performance of their methods drops off signif-
icantly. Our method solves this problem by introducing a
learning-based depth completion in our GR stage. With
GR stage, our method can preserve a high-fidelity result
on sparse scene geometry. We show the quality changes
of their methods and our method in Figure 1 at different
depth sparsity levels. When the depth map becomes sparse,
FVS [3] and SVS [4] produce blur result in the depth miss-
ing area, while our method can recover the realistic image

content.
EVS [1] and SVNVS [5] take sparse source views to ren-

der novel view. EVS [1] apply a deep-learning multi-view
stereo (MVS) method named DeepMVS [2] to estimate a
depth-probability volume for each view. SVNVS [5] di-
rectly implements a MVS module in its network for end-to-
end training. Since these two methods both use a layered
representation, they require huge memory or computation
costs. For example, EVS needs about 4 minutes to render
a target view when the number of input views is 5 and the
resolution is 250 × 500. Moreover, they only consider the
sparse views setting and are not suitable for dense views. In
contrast, our method can support high-resolution input and
is more robust and flexible for scene geometry at different
sparsity levels.

2.2. Results

Table 1 shows quantitative results on 6 scenes in Free
View Synthesis dataset. When K reduces to 4 from 8,
the performance of our method changes very little, while
FVS [3] and SVS [4] decline rapidly. Our method is also
better than EVS [1] and SVNVS [5]. We show some vi-
sual comparisons in Figure 2. FVS [3] and SVS [4] tend to
blur at the edges of images. EVS [1] will cause image dis-
tortions and SVNVS [5] will introduce a lot of noise. Our
method can generate most realistic results compared to the
ground-truth images.

We supplement EVS [1] results in Table 2. It performs
much better than SVNVS [5] in Free View Synthesis and
Surround datasets. We believe the reason is that the nearby
source views in these two datasets are much closer than in
Tanks and Temples dataset, and EVS is more suitable for
near view-interpolation.

3. Surround Dataset
Recent IBR applications focus on a circle-around sce-

nario, such as theaters, basketball and soccer stadiums, and
they wish to achieve a “bullet time” effect. However, in
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Figure 1. Comparisons on different depth maps. Three rows shows the performance of FVS [3], SVS [4] and our method when K is 4,
8, and all. When the depth map becomes sparse, FVS [3] and SVS [4] result in blur in the depth missing area, while our method can still
have a realistic result. We also show the complete depth map from our GR stage in the last column.

Method Input K Bike Flowers Pirate Playground Sandbox Soccertable
↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS

FVS [3]
5 4

21.61 0.1234 28.01 0.0644 26.62 0.1192 26.11 0.0874 26.78 0.1245 27.96 0.0501
SVS [4] 23.15 0.1389 27.72 0.0862 25.96 0.1813 28.11 0.1118 26.01 0.1485 27.25 0.0891

Ours 24.35 0.0691 31.30 0.0399 27.60 0.1049 29.12 0.0464 30.41 0.0813 31.46 0.0384
FVS [3]

5 8
22.80 0.0895 27.85 0.0818 26.83 0.1173 26.42 0.0825 27.87 0.1018 28.40 0.0453

SVS [4] 25.01 0.0848 28.16 0.1399 27.31 0.1404 28.85 0.0959 27.17 0.1201 28.00 0.0754
Ours 24.64 0.0660 31.25 0.0401 27.59 0.1049 29.14 0.0465 30.72 0.0776 31.31 0.0378

EVS [1] 5 - 21.28 0.0923 29.79 0.0414 26.31 0.1044 27.28 0.0533 28.26 0.0786 29.48 0.0411
SVNVS [5] 6 - 20.61 0.1507 26.88 0.0592 25.73 0.1267 24.90 0.1182 24.71 0.1565 25.36 0.0925

Ours 5 4 24.35 0.0691 31.30 0.0399 27.60 0.1049 29.12 0.0464 30.41 0.0813 31.46 0.0384

Table 1. Quantitative comparisons on Free View Synthesis dataset.“Input” and “K” denotes the number of input source views and depth
sparsity levels, respectively. We show the best result in bold.

such big venues, it is difficult to provide enough number of
cameras. Therefore, it requires a larger-view interpolation
method in a surround scene setting. Driven by this demand,
we propose a new dataset called Surround for evaluating
IBR methods in surround setting. In order to adapt to real
demand in practice, we choose sport stadiums and big meet-
ing rooms. Surround dataset contains 6 scenes, Basketball,
Meetingroom, Park, Philosopher, Soccer and Statue. We
use a handheld camera to capture a 360-degree video around
the scene and extract 150 to 300 source images from it. As
source images cover a 360-degree panorama, our dataset
can be used to evaluate larger-view interpolation by set-
ting different sampling rates. Following FVS [3], we use
COLMAP to estimate camera poses, depth maps and 3D
point clouds. We show some illustrations in Figure 3.

4. Dataset Preprocessing

To evaluate IBR methods on sparse scene geometry, we
preprocess two public datasets, Tanks and Temples, Free
View Synthesis, and our own Surround dataset, to generate
depth maps at different sparsity levels. We use the num-
ber of images input into COLMAP to divide sparsity levels,
defined as K. For example, when K=4, we select 4 nearby
source views (ID = 0, 1, 2, 3) as a group and send them

into COLMAP to generate sparse depth maps. We set K as
4 and 8 in practice and preprocess all three datasets. The
dense depth maps obtained from all source views are con-
sidered as ground-truth depth maps, with K = all.

For the test dataset of Tanks and Temples, we provide
K=16 and more sampling strategy in addition. Specifically,
we perform an isometric sampling according to K. For ex-
ample, when K=4, we select 4 source views (ID = 0, 4, 8,
12). In this manner, we can provide more detailed sparsity
division levels. We use valid depth ratio to represent them,
which is the percentage of number of pixels with valid depth
values to the total pixel number. After all operations, we can
obtain 6 depth sparsity levels, 40%, 50%, 60%, 70%, 80%,
90%.

To be noticed, the camera poses and sparse depth maps
generated from K images are not accurate enough, thus they
can not be used in warping the images to additional views.
To handle this problem, we first find a valid mask for the
generated sparse depth map with a threshold. And then we
use the valid mask to element-wise multiply the ground-
truth depth map to get the final sparse depth map for train-
ing.



Method Input K Basketball Meetingroom Park Philosopher Soccer Statue
↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS ↑ PSNR ↓ LPIPS

EVS [1] 5 - 25.64 0.0684 24.49 0.1175 27.57 0.0837 27.43 0.0912 24.41 0.1152 27.87 0.0722
SVNVS [5] 6 - 24.27 0.0890 24.55 0.1066 24.09 0.1334 24.37 0.1133 23.59 0.1425 24.78 0.1058

Ours 5 4 28.46 0.0588 27.63 0.0500 28.27 0.0688 28.79 0.0946 26.11 0.1129 29.23 0.0770

Table 2. Quantitative comparisons on Surround dataset. It is cleat that our method performs much better than EVS [1] and SVNVS [5],
especially in PSNR.
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Figure 2. Visual comparisons on Free View Synthesis dataset when K=4.
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Figure 3. Illustrations for Surround dataset. The first row shows the RGB images and the second row shows the corresponding depth
map rendered from 3D point cloud.
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