
Appendix
We provide additional details on our dataset in Sec. A.

In particular, we report the sensor layout (Sec. A.1), anno-
tation details (Sec. A.2), extensive information on dataset
generation (Sec. A.3) and dataset statistics (Sec. A.4).

Moreover, we conduct additional experiments in Sec. B.
We provide baselines on multitask learning under contin-
ual domain shift (Sec. B.1, and conduct ablation studies on
joint training with real-world data (Sec. B.2), the optimal
dataset size for each task (Sec. B.3), the comparison be-
tween SHIFT and the VIPER dataset (Sec. B.4), and the
error analysis for the rainy and foggy domains (Sec. B.5).

Implementation details for each experiment conducted in
this work are reported in Sec. C for full reproducibility.

A. Dataset Details
The detailed user guide and additional information can

be found at https://www.vis.xyz/shift.

A.1. Reference systems and sensor layout
The dataset has three levels of reference systems: world,

vehicle, and camera. The world system represents the ab-
solute position of objects. The vehicle system is used for
storing all 3D annotations. The camera systems are the ref-
erence systems used for each individual camera.

Tab. 5 summarizes the supported sensors. We set up the
vehicle system following KITTI’s convention and the right-
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Figure 9. The vehicle system and the sensor layout. Except for
stereo cameras, all the cameras are located on a circle centered
at the vehicle reference system’s origin (blue dot). LiDAR and
motion sensors are located at the origin. Axes directions of the
vehicle system are shown at the bottom left corner. Best viewed in
color.

Sensor Data type Position

RGB camera 24-bit RGB 5 ⇥ RGB cameras (front, left / right
45�, left / right 90�).

Stereo camera 24-bit RGB Additional RGB camera offsetting
20cm toward left from the center.

Depth camera 24-bit Gray Same as front view RGB camera.
Optical flow 32-bit UV Same as front view RGB camera.
GNSS / IMU Vector Center of vehicle.

Table 5. The data type and position settings of the sensors.

hand rule. Specifically, the origin is located at the center
of the ego-vehicle (marked as the blue dot in Fig. 9). Its x,
y, and z axes point in the right, down, and front directions,
respectively (Fig. 9, bottom left). All the sensors are lo-
cated on a circle centered at the vehicle reference system’s
origin, except for the stereo cameras that are placed on the
left to the front camera, with a horizontal displacement of
20cm. All the cameras have a field-of-view (FoV) of 90�.
The 128-channel LiDAR sensor has a vertical FoV range of
[�10

�,+10
�
] and a scan rate of 1.12M points per second.

Annotations stored in the vehicle system can be easily
converted into the camera systems. Here, the front cameras
and LiDAR sensor have camera systems identical to the ve-
hicle system, so no conversion is needed for them. For other
cameras, a vehicle-to-camera matrix (i.e. intrinsic and ex-
trinsic parameters) is provided to transform the annotations
so that they fit each camera.

A.2. Annotation details
We present detailed specifications for the annotation set

provided in SHIFT.

Object detection is a fundamental localization task for
scene understanding and a basis for numerous downstream
driving tasks, including multiple object tracking (MOT) and
object re-identification (ReID). We provide 2D/3D bound-
ing box annotations and object identities for six categories
of traffic participants, i.e. car, truck, bus, bicycle, motor-
cycle, and pedestrian, together with the visibility attributes
‘occluded’ and ‘truncated’. Moreover, for each box, we pro-
vide fine-grained object classes (e.g. vehicle model type).

While previous datasets only provide 7 DoF (i.e. only
yaw angle) 3D boxes [5, 17, 76], we provide 9 DoF annota-
tions and use the Euler angle system (i.e., yaw, roll, pitch)
to represent the orientation for bounding boxes in 3D space.

Image segmentation is a fundamental pixel-level percep-
tion task. For each frame, we provide panoptic (i.e. in-
stance and semantic) segmentation labels on the 23 classes
of the Cityscapes [10] annotation scheme. Together with 2D
bounding boxes, segmentation labels can be used in multi-
object tracking and segmentation (MOTS) and multi-object
panoptic tracking (MOTP) tasks.

https://www.vis.xyz/shift


Category Hi Candidate dom. h(j)
i BDD100K eq. Environmental parameters Degrees of shift

Time of day

noon o
daytime Sun altitude angle = {90, 75, 60, 45, 30}

altitude angle 2 [�5, 90]

morning / afternoon Sun altitude angle = {15, 10, 5}
dawn / dusk o

dawn / dusk Sun altitude angle = {4, 3, 2}
sunrise / sunset Sun altitude angle = {1, 0, -1}
night o

night Sun altitude angle = {-2, -3}
dark night Sun altitude angle = {-4, -5}

Weather

clear o
clear cloudiness = {0, 5}

cloudiness 2 [0, 100]
slight cloudy cloudiness = {10, 15}
partly cloudy partly cloudy cloudiness = {25, 50, 70}
overcast overcast cloudiness = 100

small rain
rainy

cloudiness = 70; precipitation = 20; deposit = 60; fog den. = 3
precipitation 2 [0, 100]mid rain cloudiness = 80; precipitation = 50; deposit = 80; fog den. = 3

heavy rain cloudiness = 100; precipitation = 100; deposit = 100; fog den. = 7

small fog foggy cloudiness = 60; fog density = 30; fog distance = 15 fog density 2 [0, 100]heavy fog cloudiness = 80; fog density = 90; fog distance = 20

Vehicle density
sparse - num of vehicle = 50 vehicle per map,

vehicle per framemoderate - num of vehicle = 100
crowded - num of vehicle = 250

Pedestrian density
sparse - num of pedestrians = 100 pedestrian per map,

pedestrian per framemoderate - num of pedestrians = 200
crowded - num of pedestrians = 400

Table 6. Definitions of the domain category and candidate domains, used for discrete domain shifts. Each category has a group of candidate
domains. For each candidate domain, we show its equivalent domain label in BDD100K and the environmental parameters for simulation.

Depth estimation is an essential step to extend the 2D per-
ception tasks into the 3D setting. We provide the depth
labels aligned with the front-view RGB camera to enable
image- and video-based monocular and stereo depth esti-
mation. Depth resolution is 1mm.

Optical flow estimation is an essential task for driving al-
gorithms involving motion. However, existing large-scale
datasets typically do not provide optical flow annotations
due to the high labeling cost. Representing the relative mo-
tion between each pixel in a pair of images, optical flow can
be instrumental in object tracking and ego-motion tasks. We
provide the optical flow labels in the UV map format, also
used in KITTI [17].

A.3. Data generation pipeline
We introduce the pipeline that used to generate the dis-

crete and continuous domain shifts.

Disrete shift. As discussed in Sec. 3.3, we set up an ef-
ficient sampling pipeline that can cover a diverse combina-
tion of conditions. To determine the environmental parame-
ters of each sequence, we use a technique similar to random
search. In Tab. 6, we define 4 categories of domain shifts,
e.g., time of day, weather, vehicle density, and pedestrian
density. For the i-th category (1  i  4), we define a
set of candidate domains, Hi = {h(1)

i
, · · · , h(ni)

i
}, where

each candidate h(j)
i

corresponds to a certain group of envi-
ronmental parameters, defined in the Tab. 6. Note that the

parameter can be a fixed value or a set of values. For the set
of values, we again uniformly sample one value out of the
set.

Our sampling method for the discrete domain shifts can
be summarized as following. A sequence is generated with
a fixed parameter vector ✓ = ✓1[ · · ·[✓m, where each ✓i is
sampled uniformly across all candidates in the i-th category,
i.e.,

h(j)
i

⇠ Uniform(Hi), 8i = {1, 2, 3, 4} (1)

✓i ⇠ h(j)
i

(2)

This pipeline guarantees the uniform marginal distribution
of candidates conditioned on any category. Using this
pipeline, we can easily add data without breaking the dis-
tribution of domains. Moreover, any subset of sequences of
SHIFT has the same distribution, allowing a fair experiment
on the impact of data amount.

Continuous shifts. For sequences with continuous domain
shift, the change of parameters happens on one specific do-
main category c, while others are kept unchanged, i.e. the
frame at time t is generated with the parameter vector

✓(t) = ✓1 [ · · · [ fc(t) [ · · · [ ✓4 , (3)

where fc(t) is obtained by linear interpolation of the states
listed in the ‘Environmental parameters’ column in Tab. 6.



Continuous shift type Environmental parameters

Beginning state (t = 0) Intermediate state (t = 0.2) End state (t = 1)

Time of day Sun altitude angle = 90 - Sun altitude angle = -5
Cloudiness cloudiness = 0 - cloudiness = 100

Raininess cloudiness = 0, precipitation = 0,
deposit = 0, fog density = 0

cloudiness = 80, precipitation = 50,
deposit = 80, fog density = 3

cloudiness = 100, precipitation = 100,
deposit = 100, fog density = 7

Fogginess cloudiness = 0, fog density = 0,
fog distance = 0

cloudiness = 60, fog density = 30,
fog distance = 15

cloudiness = 80, fog density = 90,
fog distance = 20

Table 7. Definitions of parameters used for continuous domain shifts. The parameters are updated for every frames during driving. The
value of parameters are determined by linear interpolation between the state of beginning, intermediate (if applicable) and end.

Specifically, fc(t) is obtained by interpolating the points

(t, ✓) = [(0, ✓c,begin) , (0.2, ✓c,intermediate) , (1, ✓c,end)] ,
(4)

where t 2 [0, 1] represents the degree of continuous shift
from the minimum to the maximum parameter allowed for
a given domain category.

Furthermore, we provide an additional set of sequences
presenting domain shifts simultaneously happening along
multiple domain shift directions within the same sequence.

Domain labeling details. The degree of shift for each
domain category is quantified by a numerical value called
severity. For weather conditions, we use percentage values
to indicate the degree of severity, where 0% corresponds
to clear weather conditions and 100% represents the most
extreme condition allowed by the CARLA simulator for a
given weather direction, e.g. cloudiness, precipitation, fog
density, or fog distance. We describe the time of day using
the Sun’s altitude angle to disentangle the lighting condition
with the sunrise/sunset time. For the object densities, we
use the number of objects per frame as the severity (Tab. 6,
rightmost column).

A.4. Dataset statistics
SHIFT is diverse in bounding box scale. Fig. 10 (left)

plots the object density measured by boxes per frame and
shows coverage from 0 to 30 boxes/frame for SHIFT.
We compare the distribution with the BDD100K’s MOT
set. Due to the sparsity of the vehicle/pedestrians den-
sity domains, our dataset has on average a higher density
of frames counting less bounding boxes than BDD100K,
but the crowded frames (� 20 boxes/frame) show similar
trends. Moreover, Fig. 10 (right) shows the distribution of
bounding box sizes, defined as

p
wh where w and h are the

width and height of a box. SHIFT covers diverse box sizes
ranging from 10 to 650 pixels. We also observe that our
dataset has 41.2% bounding boxes smaller than 15 pixels
while BDD100K has 30.9%, showing that our dataset pro-
vides challenging conditions for small object detection and
tracking.

Figure 10. Cumulative distributions of the bounding box per frame
(left) and bounding box size measured in

p
wh (right). We only

count the objects in the front camera view. SHIFT covers various
object densities and a wide range of object scale.

B. Additional Experiments
To further highlight the usefulness of SHIFT, we con-

duct experiments on multitask learning (Sec. B.1) and joint
training with real-world data (Sec. B.2). We also investigate
the optimal dataset size and sampling rate (Sec. B.3).

B.1. Multitask learning
In this experiment, we study whether different percep-

tion tasks mutually benefit or interfere with each other when
jointly learned with a shared feature extractor. The wide
variety of tasks supported in SHIFT unlocks new oppor-
tunities to investigate different combinations of perception
tasks. Special attention is also paid to the robustness of mul-
titask models under incrementally shifted domains.

Specifically, we consider four different perception tasks:
semantic segmentation, instance segmentation, monocular
depth estimation, and optical flow estimation. Each task
requires the model to learn a distinct encoding function:
semantic segmentation requires intermediate activations to
encode pixel-level information, instance segmentation re-
quires instance-level information, depth estimation requires
contextual information and object priors that allow to con-
vert 2D images to 3D cues, and optical flow requires to en-
code a function of two images that embodies information
on motion perception.



Task Train Metric Source OOD OOD Avg. �Source �OOD �S!O
clear-daytime cloudy overcast foggy rain dawn/dusk night

Semantic
segmentation (S)

S

mIoU (%) "

69.1 40.6 40.6 21.5 19.6 18.1 8.9 24.9 - - -64.0%
S + D 75.2 53.8 52.6 24.3 26.6 24.0 9.9 31.9 8.9% 28.1% -57.6%
S + F 69.4 51.8 54.7 26.4 22.4 22.7 9.8 31.3 0.4% 25.8% -54.9%
S + D + F 71.8 50.0 51.9 23.5 24.0 22.1 9.5 30.2 3.8% 21.2% -58.0%
S + I 74.8 63.9 68.1 41.0 36.8 37.3 23.6 45.1 8.2% 81.3% -39.7%
S + D + I 75.0 62.4 65.1 37.4 35.4 35.3 20.5 42.7 8.6% 71.6% -43.1%
S + F + I 72.5 58.3 59.6 35.8 27.2 28.8 14.4 37.3 4.9% 50.1% -48.5%
S + D + F + I 74.7 60.6 59.6 37.1 32.7 33.1 19.3 40.4 8.1% 62.3% -45.9%

Depth
estimation (D)

D

SILog #

17.8 28.3 23.1 81.9 46.3 54.6 63.2 49.6 - - -64.1%
D + S 16.9 25.2 22.4 65.7 43.0 49.4 57.6 43.9 5.6% 13.0% -61.6%
D + F 19.3 25.3 20.4 66.6 45.3 50.3 54.4 43.7 -7.8% 13.4% -55.8%
D + S + F 19.6 26.9 24.7 67.8 45.1 52.1 56.6 45.5 -9.2% 8.9% -56.9%
D + I 17.3 21.0 16.8 66.4 35.1 42.4 48.4 38.3 2.9% 29.3% -54.8%
D + S + I 16.0 19.5 15.4 61.1 31.2 38.5 42.7 34.7 11.0% 42.8% -53.8%
D + F + I 17.8 21.4 17.9 47.9 36.4 39.9 46.3 35.0 0.1% 41.8% -49.1%
D + S + F + I 17.6 21.9 18.3 53.2 37.1 42.7 50.5 37.3 1.0% 33.0% -52.7%

Optical flow
estimation (F)

F

EPE (px) #

6.0 6.7 6.4 9.0 9.7 9.1 11.0 8.6 - - -30.8%
F + S 7.8 8.3 8.5 10.4 12.0 10.9 12.6 10.4 -23.1% -17.4% -25.7%
F + D 6.0 6.9 6.4 9.4 10.4 9.6 11.8 9.1 -0.2% -5.0% -34.2%
F + D + S 6.1 8.5 8.3 10.6 12.1 11.0 13.0 10.6 -2.1% -18.5% -42.4%
F + I 9.8 9.6 9.6 10.4 11.3 10.6 12.1 10.6 -38.9% -18.5% -7.7%
F + S + I 7.7 8.2 7.9 9.7 10.6 9.8 11.8 9.7 -22.7% -10.8% -20.2%
F + D + I 8.0 8.3 8.2 9.9 10.6 10.0 11.9 9.8 -25.5% -12.1% -18.4%
F + D + S + I 8.1 8.4 8.4 10.1 11.0 10.2 12.1 10.0 -26.4% -14.0% -19.2%

Instance
segmentation (I)

I

mAP (%) ",
vehicles

63.9 57.4 65.7 21.9 31.2 22.7 6.6 34.2 - - 46.4%
I + S 64.9 59.1 66.2 26.4 34.4 27.1 14.3 37.9 1.5% 10.7% 41.6%
I + S + D 65.0 57.9 64.9 25.9 32.6 26.1 10.9 36.4 1.6% 6.3% 44.0%
I + S + F 62.3 57.1 64.2 21.6 31.6 23.6 7.7 34.3 -2.5% 0.1% 45.0%
I + D 65.9 59.3 66.9 26.8 32.2 26.3 11.4 37.2 3.1% 8.5% 43.6%
I + D + F 65.8 50.2 67.0 21.5 31.0 22.9 6.7 33.2 2.9% -3.0% 49.5%
I + F 63.1 56.9 65.1 20.4 28.9 21.7 5.0 33.0 -1.3% -3.6% 47.7%
I + S + D + F 64.8 57.9 65.3 22.8 31.5 23.1 8.3 34.8 1.4% 1.6% 46.3%

Table 8. Multitask learning performances. We evaluate 15 combinations of 4 perception tasks: semantic segmentation (S), monocular depth
estimation (D), optical flow estimation (F), and instance segmentation (I). The combinations of S + I, S + D, and S + D + I significantly
improve on both tasks’ source and OOD performance in their respective tasks. " (#): the higher (lower) the better.

Multitask model. To compose a unified multitask model,
we use the segmentation model DRN-D-54 [95] as fea-
ture extractor and combine it with the heads required for
other tasks. The DRN-D-54 model has 8 sequential resid-
ual blocks with dilated convolutions and transposed convo-
lutions at the end to generate segmentation results. Here, all
the modules of DRN-D-54 are used for semantic segmen-
tation. For instance segmentation, we rely on the Feature
Pyramid Network (FPN) [100], Region Proposal Network
(RPN), and ROIAlign modules identical to those introduce
in Mask R-CNN [21]. FPN uses the 2nd to 5th blocks’ out-
puts of the DRN-D network. For the optical flow and depth
estimation, we adapt the decoders similar to FlowNet [98]
and U-Net [66]. The decoder has 5 sequential blocks, where
each block has one up-sampling layer, followed by a short-
cut connection from the feature extractor’s corresponding
block, and a series of convolution layers. Together with the
feature extractor, we obtain an encoder-decoder structure

commonly used in dense prediction tasks.

Experiment setup. We traverse all 15 combinations for
the 4 tasks mentioned above. Our multitask model is trained
with 5,000 frames sampled from the clear-daytime domain
in SHIFT and evaluated under different discrete domain
shifts. To fit the multitask model into the GPU memory,
we reduce the image size to 640 ⇥ 400 pixels. Please note
that the performance will be slightly affected by the size-
reduced images and thus, it is not directly comparable to
our baseline experiments in 2 of the main paper. All com-
binations are trained for 100 epochs, when convergence is
reached for all tasks.

Experimental results are summarized in Tab. 8. Every
model is trained on the clear-daytime domain and tested on
different types of shifted domains, indicated with OOD in
the Table. We report the average performance on the out-
of-distribution domains as OOD avg. The columns �Source



S S + D S + D + Iinput ground truth

Figure 11. Qualitative results on semantic segmentation. The three rows show the results from the clear-daytime, rainy, and night domain,
respectively, of models trained on the clear-daytime domain. The combinations of S + D and S + D + I improve the performance against
domain shifts.

and �OOD report for different multitask models the rela-
tive Source / OOD avg. performance change on a given
task with respect to the performance of a single-task model
trained on that specific task. The column �S �! O. re-
ports for different multitask models the relative change from
Source to OOD avg. performance on a given task. Below
are our observations.

Multitask learning improves robustness. We observe
that specific combinations of tasks largely improve the
single-task model performance on the source domain. For
instance, the combination of semantic segmentation (S) +
depth (D) + instance segmentation (I) boosts the source do-
main performance by 8.6% / 11.0% / 1.6% on the respective
tasks. Similar improvements are observed for other combi-
nations, including S + I and S + D. We visualize the results
of these combinations in Fig. 11. This is possibly due to
the intertwined nature of such tasks. In particular, depth
and semantics both need to learn contextual features from
neighboring pixels, and both instance and semantics seg-
mentation need to segment parts of the image.

Further, multitask learning often significantly increases
the generalization of a model to domain shifts. For exam-
ple, the combination of S + D + I improves the OOD perfor-
mance in the respective tasks by 71.6% / 42.8% / 6.3%. The
improvements are substantially greater than the improve-
ments on the source domain, suggesting that the increase in
model’s robustness is not attributable to the increase in the
overall model’s performance as seen on the source domain.
We argue that this is potentially due to the model learning
more general features that are shareable across tasks and,
consequently, also more general under domain shifts. For
example, the addition of instance segmentation typically
causes the greatest robustness improvements. This might

be due to the complex nature of the instance segmentation
task, which requires to encode features capable of both de-
tecting and segmenting objects in an image.

Instance segmentation can only be improved mildly. In-
stance segmentation is only improved at most by 10.7%
on OOD performance by other tasks. As previously men-
tioned, we hypothesize that instance segmentation already
learns more general features due to its nature. Thus, the ad-
dition of other tasks provides only mild improvements. On
the other hand, however, when combined with other tasks,
instance segmentation largely boosts their robustness, e.g. S
+ I and D + I.

Optical flow is heavily affected by other tasks. Unlike
the previous tasks that benefit from multitask learning, op-
tical flow shows a different behavior. Although optical flow
can improve other tasks’ robustness (e.g. S + F and D + F),
the optical flow itself is negatively affected by the addition
of other tasks. When jointly trained with other tasks, its
performance drops by a large margin, ranging from -0.2%
to -38.9%. A possible explanation is that the optical flow
task, which takes a pair of frames as input, learns a dif-
ferent encoding function than other non-temporal tasks re-
quiring only one frame. To learn a feature extractor shared
across the two different types of inputs, the model shows
to sacrifice its effectiveness on the task requiring two im-
ages. This suggests that combining different tasks is not
trivial; instead, it requires extensive evaluation and compar-
ison. SHIFT provides a playground to develop novel mul-
titask learning techniques and to investigate and solve the
multiple challenges presented by such an interesting prob-
lem.

Domain shift is only partially mitigated. While the
model’s robustness can be improved by multitask learning,



the domain shifts provided in SHIFT still pose a tremen-
dous threat to the robustness under domain shift. For all
the evaluated tasks, the minimum average OOD perfor-
mance drop with respect to the corresponding source per-
formance (�S �! O.) amounts to ⇠ 40%. Under extreme
conditions, e.g. foggy and night, the performances are de-
graded even more than 60%, which indicates real-life risks
if autonomous vehicles heavily rely on such models.

By introducing SHIFT, which supports multi-domain
and multitask studies in a single dataset, we hope to fos-
ter future research on multitask domain adaptation algo-
rithms to counteract these domain gaps effectively. More-
over, we hope that the continuous domain shifts provided in
our dataset will shed new light on this challenging problem.

B.2. Joint training with real-world data
We investigate whether the domain variations in our

dataset in combination with a specific domain of real-world
data can make a model more robust to domain shift com-
pared to a model only trained on the real-world data. Specif-
ically, we jointly train the model with the source domain
data (i.e., clear daytime) from BDD100K and all domain
variations from ours. The model is then evaluated on other
domains of BDD100K. We employ the Faster R-CNN [63]
as the model for object detection and DRN-D-54 [95] for se-
mantic segmentation. The models are learned with the same
amount of data from BDD100K but with different amounts
of data from SHIFT.

Object detection results are shown in Tab. 9. We observe
that the joint training provides a relative improvement of the
source domain and OOD performance amounting to 2.52%
and 3.40%, respectively.

Semantic segmentation has similar trends. As shown in
Tab. 10, source domain mIoU improves from 46.04% to
51.20%, with a relative improvement of 10.34%. Moreover,
out-of-domain mIoU rises by a relative 5.30% from 37.37%
to 39.76%.

These results suggest that, if a model is trained on a lim-
ited real-world domain, jointly training with the variety of
domains provided by our dataset will improve the robust-
ness of the model to real-world shifts.

Training set source domain OOD avg.

AP AP75 AP AP75

BDD100K 0.318 0.312 0.265 0.251
BDD100K + 2k frames 0.320 0.327 0.267 0.267
BDD100K + 5k frames 0.326 0.334 0.274 0.271
BDD100K + 10k frames 0.325 0.329 0.254 0.238

Table 9. Joint training for object detection. Generalization ability
is improved with a proper amount of data.

Training set source domain OOD avg.

BDD100K 46.04 37.37
BDD100K + 6k frames 47.11 38.56
BDD100K + 12k frames 51.20 39.76
BDD100K + 24k frames 51.09 39.23

Table 10. Joint training for semantic segmentation. We report the
mIoU. Generalization ability is improved with a proper amount of
data.

Frame rate (Hz) 0.1 0.2 0.5 1 5 10

# Frames (⇥1k) 7.5 15 37.5 75 375 750

Seg. (mIoU, %) 62.6 62.9 63.1 63.0 62.9 -
Det. (mAP, %) 40.6 43.1 45.8 46.8 48.4 -
MOT (MOTA, %) 25.6 34.7 45.2 49.3 54.1 54.9

Table 11. Performance of different tasks at increasing sampling rates.
Training and testing on the same 1500 sequences from all domains.

B.3. Dataset size
To understand the impact of dataset size and optimize the

design of the dataset, we conduct ablation studies on: (1)
sampling rate and (2) amount of sequences. Every model is
trained on clear-daytime sequences.

Training sequence 350 750 1500 2000 3000

Seg. (mIoU, %) 59.4 61.4 63.0 62.6 63.1
Det. (mAP, %) 41.2 45.1 46.8 48.0 50.1

Table 12. Performance of different tasks at increasing sequences number.
Training and testing on the data of 1Hz from all domains.

Frame rate. To avoid the model learning from redundant
information, we study what is the optimal sampling rate to
achieve the best performance on a given task. Here, we test
the semantic segmentation, object detection, and multiple
obeject tracking performance on a set of images sampled at
different frame rates from a fixed set of 2000 sequences. We
notice that performance of different tasks starts to saturate
at different sampling rates (Tab. 11). For image-based tasks,
such as segmentation and detection, we argue that the infor-
mation provided by adjacent frames can be redundant, and
increasing the sampling rate over a certain threshold have
insignificant benefits on the resulting model performance.
However, for video-based tasks, like multi-object tracking,
the inter-frame information is crucial. A lower frame rate
leads to lose a considerable amount of information, thus
severely reducing the model performance (Tab. 11, third
row).

Our dataset is collected at a fixed frame rate of 10Hz,
which is necessary to support a wide range of perception
tasks. However, according to the experiments on the sam-
pling rate, we also provide a subset sampled at 1Hz for
image-based perception tasks.



Amount of sequences is another factor affecting the per-
formance. Here, we test semantic segmentation and object
detection performance on a varying number of sequences
sampled at 1Hz. In Tab. 12, we find that the performance
continuously increases up to 3000 sequences. However,
the performance gain is diminishing the more sequences
we add. This is potentially due to the limited environmen-
tal variation in the simulator. To balance between size and
learning performance, we set the total number of sequences
to 3000 for the discrete set. Together with our sampling
pipeline (Sec. A.3), the current size of SHIFT guarantees
that for each BDD100K’s domain label, we have more than
500 corresponding sequences for training and testing.

B.4. Comparison with VIPER
As a synthetic dataset, VIPER [64] also presents se-

quences from discrete domain shifts. Here, we compare the
segmentation performance under domain shifts in VIPER,
SHIFT and BDD100K (Tab. 13). We find that the adverse
conditions presented in VIPER provide a less relevant threat
to model generalization, highlighting how SHIFT mimics
more closely real-world trends.

Dataset daytime (M0) sunset night rain max�M
M0

VIPER 59.3 57.6 55.1 53.0 -10.6%
SHIFT (ours) 83.6 60.4 42.8 54.6 -48.8%

BDD100K 47.9 - 20.6 37.6 -57.0%

Table 13. Out-of-distribution performance on different datasets of a seg-
mentation model (DRN-D) trained on the daytime domain. The last col-
umn represents the maximal relative performance drop w.r.t. source.

B.5. Error analysis for foggy and rainy
As noticeable in Fig. 5, detection and segmentation mod-

els show a slightly different behavior under different types
of domain shift. While it is first worth noticing that seg-
mentation and detection have different label sets, we here
analyze the differences in performance on the two domains
presenting the largest discrepancy across the two tasks, i.e.
foggy and rainy. For example, we find that the most dras-
tically affected class for segmentation in the rainy domain
is ‘sky’ (-69% mIoU w.r.t. clear-daytime), with 25% of the
corresponding pixels misclassified as ‘building’, as opposed
to only 2% under foggy conditions. For object detection, we
find that most of the errors come from missed detections.
The shifted domains lower the classification confidence be-
low the pre-selected threshold, with foggy posing a greater
challenge (car AP drops by 74% on foggy vs 40% on rainy).

C. Implementation Details
In this section, we describe the implementation details

and metrics for each task in Tab. 2 and Fig. 5.

Object detection. We compare Faster R-CNN [63], Cas-
cade R-CNN [6], and YOLO v3 [62]. The backbone net-
work for the first two methods is ResNet-50 [22], while
YOLO v3 uses DarkNet [61] as its backbone. We use the
mean Average Precision (mAP) as the metric for 2D bound-
ing boxes. We train the models on 50k frames of data, fol-
lowing the “1x” schedule provided in the mmdetection
library [97].

Semantic segmentation. We also compare three models
for semantic segmentation, DeepLab v3+ [9], Fully Con-
volutional Network (FCN) [41], and DRN-D-54 [95]. All
three models use the ResNet-50 [22] as the backbone. We
train the models with 20k frames of data until they converge
(approximately 150 epochs). We use the mean IoU (mIoU)
metric for all evaluations on semantic segmentation.

Instance segmentation. We use Mask R-CNN [21] with
ResNet-50 backbone and follow the same training routine
as Faster R-CNN [63]. A segmentation mAP metric is used
for evaluation.

Depth estimation. We use AdaBins [3] for the depth
estimation experiments. It uses a U-Net-like [66] back-
bone structure and predicts depth with adaptive bins. The
model is trained using its official implementation. We fol-
low KITTI’s benchmark on depth estimation [17]. Specifi-
cally, we use the Scale-invariant Logarithm (SILog) metric
evaluated on the central crop of the image (i.e. Eigen Crop).

Optical flow estimation. We use RAFT [79] for optical
flow estimation. The model is fine-tuned from pre-trained
weights on the Things Dataset [46], with 10k frames of our
data. The End-point Error (EPE) metric is used for evalua-
tion.
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