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A. Data Statistics
Data statistics for the dataset we used are listed in Ta-

ble 2.

B. Training and Evaluation
We perform an extensive hyper-parameter search for our

models. See Appendix E for details. We use AdamW to
train the model, unless we additionally specify and apply a
linear decay scheduler. We train the models for 20/7 epochs
for image-text/video-text tasks, and warm up the learning
rate from 0 to the highest learning rate in the first 2 epochs.
In the image-text experiments, we use batch size 500 for
CLIP-BART and 250 for CLIP-T5, and the total training
time is about 20 hours and 40 hours for CLIP-BART and
CLIP-T5 with one A6000 GPU (48G memory), respec-
tively. In video-text experiments, we use batch size 50 for
CLIP-BART and the total training time is about 10 hours.
We select the last checkpoint for evaluation and report the
evaluation score of the four tasks as well as the average
score in our experiments. The percentage of updated pa-
rameters is also reported as the metric for approaches’ effi-
ciency, and we do not take visual encoder into account for
computation since it is frozen.

C. Details for Prompt-tuning
Prompt-tuning [7] adds trainable parameters to the en-

coder’s inputs for adapting those parameters for new tasks
without changing the model. Specifically, we assume the
input indices for generating prompts are 1, 2, ..., Np ∈ N,
where Np is the length of prompts. We next apply a
three-layer neural network to transform the prompts em-
beddings to the correct dimension for the language model.
The first layer is an embedding layer, parameterized by
θE ∈ RNp×di , and the rest of the two layers are parame-
terized by θD ∈ Rdi×d and θU ∈ Rd×di . Since the archi-
tecture of the prompt network is quite similar to the adapter
module, we use the same notations as we used in adapters

for simplicity. The mathematic form can be written as the
following,

h = fθE (p)

hp = fθU (σ(fθD (h)))
(1)

where p ∈ 1, 2, ..., Np, hp being the prompt of index p, and
we use Tanh as the activation function. Next, we can com-
bine the prompt embeddings with vision and sentence em-
bedding, feed-forwarding to the model, and train them with
backpropagation. The trainable parameters consist of the
input prompts embeddings and the parameters of the three-
layer neural network. Note that unlike in adapter modules
that d is smaller than di for saving memory, d in the prompt
network is sometimes greater than di since it is the main
hyper-parameter to increase the number of trainable param-
eters. The length of the prompt Np does not contribute
much to the number of parameters since it only influences
the embedding layer, which usually is a small layer. Thus,
using longer prompts is a parameter-efficient method to
train models. However, the memory usage would increase
significantly with longer prompts due to the quadratic cost
of attention layer on input lengths. For a fair comparison,
we maximize Np to use the same amount of memory as be-
ing used in adapter-based approaches (around 40 GB).

D. Details for LoRA

Assume the initial weight for a layer is θdi×do , LoRA [3]
learns two low-rank matrices A ∈ Rdi×d and B ∈ Rd×do
(d� di, do) to approximate the weight’s updates, that is

∆θ = AB (2)

The output of this layer can be written as fθ+AB(h). Hu
et al. [3] apply this trick to attention layers (not in feed-
forward layers), and they also update bias terms of the
model. Compared to the original model, using adapters or
prompt-tuning, which modify the network or inputs, causes
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Method Best
Learning Rate

Updated
Params

(%)

VQA
Karpathy test

Acc. (%)

GQA
test-dev

Acc. (%)

NLVR2

test-P
Acc. (%)

COCO Cap.
Karpathy test

CIDEr
Avg.

(A) Full fine-tuning 1× 10−4 100.00 67.6 56.7 73.0 112.9 77.6

(B) Multiple Adapters
(B.1) - d = 96 3× 10−4 12.22 65.4 54.0 69.8 114.3 75.9
(B.2) - d = 48 1× 10−3 7.58 65.4 53.7 65.3 115.0 74.9

(C) Half-shared Adapters (d = 96)
(C.1) - sharing downsampling layers 3× 10−4 8.40 65.2 53.3 70.2 113.8 75.6
(C.2) - sharing upsampling layers 3× 10−4 8.36 65.2 53.4 71.2 113.7 75.9

(D) Single Adapter
(D.1) - d = 192 1× 10−3 7.54 66.5 54.0 73.5 115.8 77.4
(D.2) - d = 96 1× 10−3 4.36 65.9 54.5 74.2 114.9 77.4
(D.3) - d = 64 1× 10−3 3.30 65.2 53.8 72.3 114.5 76.4
(D.4) - d = 48 1× 10−3 2.78 64.7 53.9 71.5 114.2 76.1
(D.5) - d = 24 1× 10−3 1.98 63.5 52.2 71.0 113.5 75.1

(F) Hyperformer
(F.1) - d = 96, dp = 8 1× 10−3 5.79 65.1 53.4 72.3 114.6 76.4
(F.2) - d = 96, dp = 4 ∗ 1× 10−3 3.87 65.0 53.2 51.1 114.9 71.0
(F.3) - d = 48, dp = 8 1× 10−3 3.77 64.5 52.5 71.3 114.3 75.7

(G) Multiple Compacters (d = 48)
(G.1) - w/ sharing weights, w/ low-rank param. (r = 1), k = 1 1× 10−3 1.381 50.8 41.6 53.5 104.9 62.7
(G.2) - w/ sharing weights, w/ low-rank param. (r = 1), k = 4 1× 10−3 1.381 52.6 43.5 54.0 111.6 65.4
(G.3) - w/ sharing weights, w/ low-rank param. (r = 1), k = 8 1× 10−3 1.382 52.2 42.4 58.3 109.8 65.7
(G.4) - w/ sharing weights, w/ low-rank param. (r = 1), k = 12 1× 10−3 1.383 53.9 43.7 60.4 111.1 67.3
(G.5) - w/ sharing weights, w/o low-rank param., k = 4 1× 10−3 2.83 52.7 42.7 59.7 112.2 66.8
(G.6) - w/o sharing weights, w/o low-rank param., k = 2 1× 10−3 4.42 64.0 52.9 68.3 115.7 75.2
(G.7) - w/o sharing weights, w/o low-rank param., k = 4 1× 10−3 2.84 62.4 51.4 68.6 115.5 74.5
(G.8) - w/o sharing weights, w/o low-rank param., k = 8 1× 10−3 2.11 61.4 50.9 68.9 115.4 74.1
(H) Multiple Compacters (d = 96)
(H.1) - w/o sharing weights, w/o low-rank param., k = 2 1× 10−3 7.02 64.6 53.4 69.1 116.0 75.8

(I) Single Compacter (d = 96)
(I.1) - w/o sharing weights, w/o low-rank param., k = 2 1× 10−3 2.67 64.2 53.3 71.7 114.1 75.8
Single Compacter (d = 48)
(I.2) - w/o sharing weights, w/o low-rank param., k = 2 1× 10−3 1.59 61.6 50.7 69.0 114.0 73.8

(J) Multiple Prompts
(J.1) - Np = 40, dm = 800 1× 10−3 4.53 43.8 38.1 51.1 104.6 59.4
(J.2) - Np = 40, dm = 100 1× 10−3 1.64 47.4 37.0 49.8 108.6 60.7

(K) Single Prompt
(K.1) - Np = 40, dm = 800 1× 10−3 2.00 44.0 36.3 51.8 103.9 59.0
(K.2) - Np = 40, dm = 100 1× 10−3 1.25 43.5 36.4 52.0 103.4 58.8

Table 1. The multi-task evaluation results for CLIP-BART on VQA, GQA, NLVR2 and COCO Caption between adapter-based approaches
with different hyper-parameters. We bold the highest average accuracy separately for each approach, and we also bold the best configuration
we used in the main paper. Note that we don’t use V&L pre-training for every model. * denotes the NLVR results might be improved if
we use different learning rates.

Type Dataset Data size (# videos / # QA pairs, # captions)
Train Validation Test

Image

VQA [2] 113.2K/605.1K 5.0K/26.7K 5.0K/26.3K
GQA [4] 72.1K/943.0K 10.2K/132.1K 398/12.6K
NLVR2 [10] 103.2K/86.4K 8.1K/7.0K 8.1K/7.0K
COCO Cap. [1] 113.2K/566.8K 5.0K/5.0K 5.0K/5.0K

Video

TVQA [5] 17.4K/122.0K 2.2K/15.3K 2.2K/15.3K
How2QA [8] 24.5K/34.2K 3.1K/3.1K 3.1K/3.1K
TVC [6] 17.4K/86.7K 10.8K/43.6K 10.8K/43.6K
YC2C [11] 10.3K/10.3K 3.5K/3.5K 1.6K/1.6K

Table 2. The statistics of the datasets used in our experiments.

extra computation in the inference. However, there is no ex-
tra overhead in LoRA since we can add the updates back to
the model after training.

E. Hyper-parameter Search

We search over the learning rates among {1× 10−4, 3×
10−4, 1 × 10−3} for each hyper-parameter configuration.
To reduce the cost of searching, we utilize a heuristic logic:
we first search for the best learning rate for the one hyper-
parameter configuration (randomly chosen) and then use the
same learning rate for other configurations. We perform an-
other learning rate search only if the results are diverged for
some tasks (e.g. sometimes the results of NLVR2 become
very low at certain learning rates).

For the Adapter, the only hyper-parameter is the hidden
dimension d. We also ablate two variants of Half-shared
Adapters: sharing upsampling or downsampling layers. We
include the search about the projected hidden dimension de
for the task projector network in the Hyperformer. Regard-



Method Best
Learning Rate

Updated
Params

(%)

VQA
Karpathy test

Acc. (%)

GQA
test-dev

Acc. (%)

NLVR2

test-P
Acc. (%)

COCO Cap.
Karpathy test

CIDEr
Avg.

(A) Full fine-tuning 1× 10−4 100.00 67.3 56.5 75.4 113.1 78.1

(B) Multiple Adapters
(B.1) - d = 192 1× 10−3 24.56 66.0 55.7 51.8 111.9 71.3
(B.2) - d = 96 1× 10−3 14.29 66.1 55.7 52.5 112.8 71.8

(C) Single Adapter
(C.1) - d = 384 3× 10−4 14.25 67.6 55.9 73.6 111.8 77.2
(C.2) - d = 192 3× 10−4 7.98 67.6 56.2 73.9 111.8 77.4
(C.3) - d = 96 1× 10−3 4.49 66.4 55.5 72.7 111.5 76.5
(C.4) - d = 48 1× 10−3 2.64 65.7 54.7 70.9 111.1 75.6

(D) Hyperformer
(D.1) - d = 192, dp = 8 1× 10−3 6.37 65.5 55.1 71.5 112.2 76.1
(D.2) - d = 192, dp = 4 1× 10−3 3.99 65.0 53.9 70.4 111.7 75.2

(E) Multiple Compacters (d = 192)
(E.1) - w/o sharing weights, w/o low-rank param., k = 2 ∗ 1× 10−3 14.30 66.1 55.0 52.1 112.9 71.5
(E.2) - w/o sharing weights, w/o low-rank param., k = 4 ∗ 1× 10−3 8.06 65.4 55.0 52.2 113.2 71.5
(E.3) - w/o sharing weights, w/o low-rank param., k = 8 ∗ 1× 10−3 4.66 63.3 52.9 51.7 110.4 69.6

(F) Single Compacter (d = 192)
(F.1) - w/o sharing weights, w/o low-rank param., k = 2 1× 10−3 4.49 67.0 56.6 72.5 112.7 77.2
(F.2) - w/o sharing weights, w/o low-rank param., k = 4 1× 10−3 2.65 66.1 55.2 71.8 111.7 76.2
(F.3) - w/o sharing weights, w/o low-rank param., k = 8 1× 10−3 1.72 65.2 54.1 71.6 111.5 75.6

Table 3. The multi-task evaluation results for CLIP-T5 on VQA, GQA, NLVR2 and COCO Caption between adapter-based approaches with
different hyper-parameters. We bold the highest average accuracy separately for each approach, and we also bold the best configuration we
used in the main paper. Note that we don’t use V&L pre-training for every model. * denotes the NLVR2 results might be improved if we
use different learning rates.

Model Approach Learning Rate Batch size Other hyper-parameters

CLIP-BART

Full fine-tuning 1× 10−4 500 -
Multiple Adapters 3× 10−4 500 d = 96
Half-shared Adapters 3× 10−4 500 sharing upsampling layers, d = 96
Single Adapter 1× 10−3 500 d = 96
Hyperformer 1× 10−3 500 d = 96, dp = 8
Multiple Compacters 1× 10−3 500 remove share weight and low-rank, d = 96, k = 2
Single Compacter 1× 10−3 500 remove share weight and low-rank, d = 96, k = 2
Multiple Prompts 1× 10−3 500 Np = 40, dm = 800
Single Prompt 1× 10−3 500 Np = 40, dm = 800

CLIP-T5

Full fine-tuning 1× 10−4 250 -
Multiple Adapters 1× 10−3 250 d = 192
Single Adapter 3× 10−4 250 d = 192
Hyperformer 1× 10−3 250 d = 192, dp = 8
Multiple Compacters 1× 10−3 250 remove share weight and low-rank, d = 192, k = 2
Single Compacter 1× 10−3 250 remove share weight and low-rank, d = 192, k = 2

Table 4. The best hyperparameter configurations for different parameter-efficient training approaches.

ing the Compacter, we have tried different numbers of Kro-
necker products (k), hidden dimension d, and whether shar-
ing weights and using low-rank parameterization. We also
tune the dm for prompt-tuning.

E.1. CLIP-BART Hyper-parameter Search

We show the results of the hyper-parameter search in Ta-
ble 1. We bold the final configurations used in the main
paper and we also list the configurations in Table 4. The ex-
ception is that we use the same hyper-parameters for the
“Single” and “Multiple” approaches. For example, even

though Multiple Prompts perform better when dm = 100,
we still use dm = 800 for both Multiple Prompts and Single
Prompt for consistency (J and K rows in Table 1).

E.2. CLIP-T5 Hyper-parameter Search

We display the results of the hyper-parameter search
for CLIP-T5 in Table 3 and final configurations for each
method in Table 4. We find that the Compacter (F.1 in Ta-
ble 3) shows the different fashion in T5: it can perform sim-
ilarly to the Single Adapter (C.2 in Table 3) using fewer
parameters. This might because the Compacter is mainly



Method VQA GQA NLVR2 COCO
Cap. Avg.

CLIP-BART
- w/o prompt 66.7 56.5 73.2 112.4 77.2
- w/ prompt 67.6 56.7 73.0 112.9 77.6

CLIP-BART + Single Adapter
- w/o prompt 65.1 53.9 72.7 115.6 76.8
- w/ prompt 65.9 54.5 74.2 114.9 77.4

Table 5. Ablation results of adding task-specific prompts.

Method Updated
Params (%)

VQA
test-std

GQA
test-std

CLIP-BART
+ Full fine-tuning 100.00 70.1 52.5
+ Single Adapter 4.18 68.3 50.9
+ Single LoRA 5.93 67.3 50.0
+ Single Prompt 2.00 45.3 37.3

Table 6. Leaderboard results of test-std split for representative
approaches from different method families.

validated on T5 in [9].

F. Additional Experimental Results

Different Visual Representations. We compare the results
(Table 1) of CLIP-BART and VL-BART (w/o pre-training)
and find out that there is a small improvement in using CLIP
features over R-CNN features (77.6 vs. 76.7). Note that our
CLIP also uses images with a smaller size (224 × 224 vs.
800 × 1333), so the result proves the effectiveness of pre-
trained cross-modality features.

Adapters with Task-specific Prompts. We experiment to
remove task-specific prompts before the input sequence,
namely, from “[task]: [input]” to “[input]”, where [task]
is task indicator, such as “vqa”, “gqa”, “nlvr”, and “cap-
tion”. The ablation is only for the approaches using one
set of parameters for multi-tasking, such as full fine-tuning
and Single Adapter. We exclude Hyperformer in this ex-
periment since we follow the original implementation to re-
move all prompts and use task embedding as the condition.
The results of whether to use task-specific prompts are dis-
played in Table 5. We find that using prompts can improve
performance, and the improvement likely comes from re-
solving the confusion between tasks. However, the model
still performs well without prompts. We hypothesize that
the data distribution between tasks is large enough for the
model to understand to treat them differently, so the added
prompts might become redundant. For example, there is no
text input in MSCOCO, while there are two input images in
NLVR2.

Methods VQA

Full fine-tuning 69.9
Multiple Adapters 66.7
Half-shared Adapters 66.6
Single Adapter 68.1
Hyperformer 67.5
Multiple Compacters 66.5
Single Compacter 66.4
Multiple LoRA 67.4
Single LoRA 67.0
Multiple Prompts 48.8
Single Prompt 45.4

Table 7. Test-dev results for VQA.

G. Leaderboard Results for VQA
While we use the Karpathy split for VQA evaluation

in the main content, we also report the test-std results for
representative approaches and test-dev results for all ap-
proaches in Table 6 and Table 7. In short, the trend remains
similar as using the Karpathy split, and the Single Adapter
still performs the best among parameter-efficient training
methods.

H. Limitations
Next, we discuss some limitations of this work. We have

carried out extensive experiments on four V&L tasks with
our proposed CLIP-BART and CLIP-T5. However, differ-
ent architectures have their own best hyper-parameters, and
data distributions are varied across tasks, so our results and
findings do not always guarantee to be generalized to other
tasks. Furthermore, we experiment with the three popular
adapter variants, but they cannot represent all the adapter-
based approaches.
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