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1. DEVIL Dataset Details
1.1. Source Videos

To identify a high-quality set of source videos depicting scenic landscapes, we begin by searching Flickr [7] for videos
that contain the term “scenic” in their metadata. From these preliminary results, we identify a small number of users who
upload a large volume of high-quality, non-post-processed videos. We then refine our search to “scenic” videos from those
users within a given upload time frame (January 2017 - January 2019). From these videos, we automatically detect and
discard any that contain shot transitions, resolutions not equal to 1920×1080, or COCO object classes [9] as detected by a
Mask R-CNN model [5] provided by Detectron2 [12]. After automatic filtering, we manually inspect the remaining videos
and remove those that contain undetected foreground objects or shot transitions, as well as other signs of post-processing
(e.g., sped-up videos). We split the remaining videos into clips containing between 45-90 frames, which constitute a grand
total of 1,250 source clips.

1.2. Source Video Attributes

To annotate high BG scene motion, we manually identify clips that contain running bodies of water that cover at least 40%
of the frame for all frames; for low BG scene motion, we identify clips that contain no running bodies of water (we establish
our BG scene motion annotations based on bodies of water since they are prevalent in our data and easy for people to identify
by visual inspection). We did not use automatic classifiers for this attribute due to their poor performance and the automatic
bias that would have been introduced through their usage.

To annotate camera motion, we use classical affine alignment techniques and measure the amount of invalid pixels intro-
duced via warping as a proxy for camera motion. The intuition behind this classifier is that high camera motion produces
frames with poor pairwise affine alignments, and that warping frames by such transforms introduces a high percentage of
invalid pixels into the field of view (the converse is true for low camera motion). Despite the simplicity of this approach, we
found that it achieves a sufficiently high precision-recall AUC for our purposes (0.90 on a manually-annotated version of the
DAVIS train/val set [10]).

Concretely, we label camera motion as follows: between a given pair of video frames, we first compute bidirectional robust
affine transformations using RANSAC [4] over matched SURF keypoints [1]. Then, we warp the frames by the corresponding
affine transformation and compute the number of invalid pixels introduced by the warp; we define the inverse of this quantity
as the pairwise compatibility between the given frames. For a given clip, we sample ten evenly-spaced frames and compute
the minimum pairwise compatibility between all pairs, which we define as the total frame compatibility of the clip. Finally,
we obtain camera motion annotations by thresholding the total frame compatibility.

1.3. Occlusion Masks

To generate occlusion masks with our desired DEVIL attributes, we opt for a procedural generation approach inspired by
Chang et al. [3], which enables fine-grained control over mask shape and behavior. In their framework, an initial mask shape
is generated by sampling control points along a random walk with momentum (i.e., biased toward an initial direction), and
then connecting the control points with a stroke of random thickness. The mask is animated by moving all control points
with a given velocity and then slightly perturbing their positions at each time step.

We extend the code of Chang et al. with several changes to enable even finer control over mask size and motion. For
example, we reduce the impact of momentum in the initial mask-drawing phase to increase the diversity of mask shapes.
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Figure 1: Comparison of DEVIL slice difficulty. t and s indicate that lower and higher is better, respectively. Error bars
show standard error across the seven evaluated methods.

Additionally, we apply inward-facing acceleration to the control points whenever they are sufficiently far from the mask’s
centroid, which effectively constrains its maximum possible area. Furthermore, we force the control points to bounce off the
edge of the frame to prevent them from leaving the field of view. Finally, we randomly reverse the temporal dimension of
masks with a 50% probability since they tend to grow in size over time.

Because the mask generation procedure is parameterized, we can produce occlusion masks that correspond to our desired
DEVIL attribute settings by sampling from distinct configurations. To generate masks with small and large FG sizes, we
sample from two corresponding ranges of stroke widths, and also change the maximum possible distance of each control
point to the centroid. To vary the FG displacement, we sample the initial velocity of the overall mask from two different
ranges. Finally, to generate masks with low and high pose motion, we vary the stochasticity of the control points (i.e., for
low pose motion masks, the control points are less likely to accelerate in a random direction per frame).

2. Evaluation Metric Details
In this section, we further describe our evaluation metrics, including details on the features used for the deep neural

network-based metrics and parameters for the temporal consistency metric.

LPIPS and PVCS Our implementation of LPIPS is derived from the original code from Zhang et al. [13]. We use their
fine-tuned AlexNet model weights [8] as well as their feature activations. For PVCS, we extend the LPIPS code to use a
pre-trained I3D model [2] in place of the AlexNet model; distance is computed from the feature activations from I3D’s five
pre-pooling layers.

FID and VFID Our implementation of FID is derived from a third-party implementation of the metric from Heusel et
al. [6].1 The representation of a video frame corresponds to the activations from the final pooling layer of the Inception

1The third-party implementation is available at https://github.com/mseitzer/pytorch-fid.

2

https://github.com/mseitzer/pytorch-fid


(a) FG displacement (b) FG pose motion

(c) FG size

Figure 2: Relative improvement of each method under reconstruction and realism metrics when DEVIL mask attributes
change from low to high. Within each plot, the methods are sorted by PVCS performance.

Network [11], followed by global mean pooling over the remaining spatial dimensions. For VFID, we extend the third-party
implementation of FID to use the same pre-trained I3D model as PVCS. To obtain the representation of a video, we extract
the activations of I3D’s final pooling layer and compute the average over the spatial and temporal dimensions (VFID is thus
the Fréchet distance over video representations).

PCons To compute PCons between two frames, we first extract the 50×50 patch centered at the centroid of the mask from
the first frame (if this patch partially lies beyond the boundary, we clip the centroid coordinate such that the patch lies entirely
inside the image). Then, we compute the maximum PSNR between the extracted patch and all valid 50×50 patches in the
second frame whose centers are within a Chebyshev distance of at most 20 pixels from the first frame’s centroid coordinate.
To compute the PCons of an entire video, we take the average PCons over all consecutive frame pairs (i.e., a 2-frame sliding
window).

3. Additional Quantitative Results
In Figure 1, we show the average performance of the seven evaluated inpainting methods on each of our ten DEVIL

splits. We observe that across the reconstruction and realism metrics (Figure 1a-d), performance changes substantially under
the occlusion mask attributes, but less substantially under source video attributes. The temporal consistency metric PCons
changes less dramatically under the DEVIL attributes (Figure 1e), suggesting that temporal consistency performance is
relatively stable under changes in the source video and mask content.

In Figure 2, we show the relative improvement experienced by each method when FG displacement, pose motion, and size
are increased. The flow propagation methods FGVC, JointOpt, and DFCNet generally benefit the most from increased FG
displacement and pose motion, whereas OPN benefits the least. As for FG size, OPN is more sensitive to this attribute than
the other methods under three out of four reconstruction and realism performance metrics.

Figure 3 shows the relative change in temporal consistency performance (PCons) when each DEVIL attribute changes
from low to high. Overall, we found that temporal consistency is the aspect of inpainting quality that is least sensitive to
changes in DEVIL attributes; however, some models still experience more noticeable differences than others (e.g., DFCNet
is remarkably sensitive to BG scene motion).
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Figure 3: Relative improvement in temporal consistency when DEVIL attributes change from low to high.
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