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Figure S.1. Architectural overview of the GNet network, as well as the optimization post-processing step (right-most part).

The supplemental material includes this document.
However, our results involve human motion and interaction
with 3D objects. Therefore, we also provide a video on
our website to showcase the realism of our generated grasp-
ing motions. Our video: (1) explains the problem and our
motivation, (2) explains our method and key ideas, and (3)
shows many results, including qualitative motion results.

1. Data Preparation

GNet – Data preparation: GNet generates static whole-
body grasps. Therefore, from the GRAB dataset, we collect
all frames with right-hand grasps, for which subjects grasp
the object in a stable way. For this, we follow the selection
criteria used for GrabNet’s [3] training data. We then center
the object at the origin along the horizontal plane, i.e., while
preserving its height. This is important as the object height
changes the body pose for grasping. In total, we collect
160K, 26K, and 12.5K frames for the training, testing, and
validation set, respectively.

MNet – Data preparation: On the other hand, since
MNet generates motion, from each sequence of GRAB, we
gather all frames from the starting one up to the frame where
the right hand first establishes a stable grasp. For this, we
use the same selection criteria as above for GNet. We then

create several sub-sequences by sliding a 21-frame long
window over each sequence with a stride of 1 frame. For
each sub-sequence, we consider the first 10 frames as “past”
motion, the last 10 frames as “future” motion, and the mid-
dle one as the “current” frame. Then, following Starke et
al. [2], we make all “past” and “future” frames relative to
the body coordinate system of the “current” frame, while
keeping the gravity direction always upward. In total, we
collect roughly 40K, 7K, and 3K motion sub-sequences
for the training, testing, and validation sets, respectively.

2. Network Architectures

2.1. GNet Architecture

For an architectural overview of GNet and its
optimization-based post processing, see Fig. S.1. GNet
has a cVAE architecture that generates a static whole-body
grasp, conditioned on the given object and its location. To
do this, the encoder first encodes whole-body grasps into an
embedding space. Then, the decoder takes a sample from
this space and outputs SMPL-X parameters, Θ̂, the head
direction vector, q̂ , and hand offset vectors, d̂h )o, shown in
the figure. We then use the interaction features, q̂ and d̂h )o,
to refine the predicted SMPL-X parameters Θ̂ to get a more
realistic whole-body grasp.



Figure S.2. Architectural overview of the MNet network, as well as the optimization post-processing step (bottom part).

2.2. MNet Architecture

In Fig. S.2 we show the architectural overview of MNet
and its optimization-based post processing. MNet is an
auto-regressive network that takes in each iteration 5 past
frames, Xp, and generates the next 10 frames, Xf . The op-
timization process refines the motion to better “reach” the
“goal” grasp (generated by GNet). Note that the optimiza-
tion step is activated only when MNet’s estimated hand ver-
tices get closer than 10 cm to the “goal” hand vertices.

3. Qualitative Results
In Fig. S.3 we show more qualitative results of GOAL

from different views and with close-ups on hands.

4. Failure Cases
Despite generating mostly realistic motions, the MNet

optimization sometimes results in small hand-object pene-
tration before the “goal” grasping frame; we show two ex-

amples in Fig. S.4. This is due to linearly interpolating the
motion between the “current” and “goal” frames during op-
timization, and could be solved in future work by adding
a penetration loss, and potentially by replacing the linear
interpolation with a more involved approach.

In addition, in some cases we observe “foot sliding”,
especially when the “starting” body is placed further than
1.5m from the object. Figure S.5 shows some “foot-sliding”
cases in comparison to the ground-truth motion. While our
main focus here is to generate grasping motion, future work
should look into combining GOAL with longer walking-
motion generation methods [1, 4].

5. Social Impact
While realistic motion generation has mostly positive use

cases in AR/VR, games, and movies, with the recent ad-
vances in neural rendering and deepfakes, we see a possi-
bility that our results could be used for full-body deepfakes.
Being aware of this, we will make our models available with
an appropriate license.



Figure S.3. More qualitative results generated by GOAL and showed from different views with close-ups on the hand grasps.



Figure S.4. Two penetration failure cases during MNet’s optimization post-processing with linear interpolation. In the figure the hand
approaches the object from right to left, and the red ovals highlight hand-object penetrations.

Figure S.5. A failure case of “foot sliding” generated by MNet (left), and compared to the corresponding ground-truth motion (right). Note
that for the ground truth (right) the right foot maintains contact with the floor, while the left foot moves in the air for walking.
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