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A. Training & Implementation Details
A.1. Datasets Preprocessing

A.1.1 UK Biobank Genetic Modalities

During the pretraining phase using UK Biobank data, we
choose the following feature dimensions. For the raw-
SNPs, we uniformly sample every 100th SNP from 22
Chromosomes (excluding the X and Y chromosomes), re-
sulting in 7, 854 SNPs per sample. For PGS, we used 481
scores for a wide variety of different traits downloaded from
the PGS Catalog [13]. We created burden scores for 18, 574
protein-coding genes [19]. These binary scores indicate
whether a participant has at least one potentially damaging
rare (MAF < 1%) variant within a given gene.

A.1.2 Diabetic Retinopathy detection (APTOS)

In this task we use the APTOS 2019 Blindness Detec-
tion [1] dataset, which has 3, 662 retinal fundus training
samples. As explained in the main paper, the labels in
this dataset have five levels of disease severity, defining
five classes. However, these classes are not mutually ex-
clusive, as a higher disease severity of e.g. four is also of
level three and below. Hence, we employ a multi-hot en-
coding scheme for the labels. For instance, class three is
encoded as [1,1,1,0,0] and two as [1,1,0,0,0],
and so on. We split the dataset into three different splits of
training (60%), validation (20%), and test (20%). There is
no overlap of patients across these splits.

A.1.3 Retinal Fundus Disease Classification (RFMiD)

For this task, we use the Retinal Fundus Multi-disease Im-
age Dataset (RFMiD) [20], which has 3, 200 images. The

*Equal contribution

overall number of disease classes is 45. However, we found
that two classes (”HR” and ”ODPM”) have no positive
cases, so we exclude these two classes and only work with
the remaining 43 classes. As mentioned before, we convert
these classes to multi-hot labels and solve the task as mul-
tilabel classification. We use this dataset’s official splits for
training, validation, and test.

A.1.4 Pathological Myopia Segmentation (PALM)

We use the Pathologic Myopia challenge dataset [7] for
this task, which has 400 image samples with segmentation
masks. As for segmentation labels, this dataset has three
annotated areas: i) peripapillary atrophy (available for 311
cases), ii) optic disc (available for all cases), and iii) detach-
ment (available for 12 cases only). Given that detachment is
rarely available, we omit it from this task and only predict
the atrophy and disc classes. We stratify the patients using
the atrophy labels, to ensure equal representation of classes
in train (60% of dataset size) / val (20%) / test (20%) splits.

A.1.5 Cardiovascular Risk Prediction (UKB)

To predict the cardiovascular risk factors of (sex, age, BMI,
SBP, DBP, smoking status) from retinal fundus scans, we
use 102, 219 images from the UKB [26]. This corresponds
to the training split (70% of UKB dataset size). We use the
remaining scans for validation (10% of dataset size) and for
the test split (20%). Each person only appears in one split.
The training for this task is performed using two models: i)
one model to classify the categorical labels (sex to binary la-
bels {0,1}, smoking status to binary labels too), ii) a second
model to predict – solved as a regression task – the remain-
ing continuous variables (age, BMI, SBP, and DBP). We use
two models because the loss values of these two tasks have
different scales. We preprocess the values of the continuous
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factors by standardization (removing the mean and scaling
to unit variance). Finally, we impute the missing values of
these factors by using the ”mean” for continuous factors and
”median” for discrete factors.

A.2. Imaging Preprocessing

A.2.1 Image Quality Control

The UK Biobank contains a relatively large number of reti-
nal fundus images with bad quality (e.g. completely black
or extremely overexposed). To filter out extreme outliers,
we performed two steps of quality control. First, we only
included images where a simple circle-detection algorithm
[10] could find a circle. In the second step, we filtered out
the top and bottom 0.5% brightest and darkest remaining
images.

A.2.2 Image transformations

We cropped images to the circles detected in Ap-
pendix A.2.1 and rescaled to 448 × 448 pixels. During
training, we randomly transform images by a rotation of up
to 20◦ and flip the image horizontally with a 50% proba-
bility. We also follow the common practice of normalizing
(standardizing) all the image intensities using the mean and
standard deviation from ImageNet [5].

A.3. Genetics Preprocessing

In all our experiments we used the genetic data provided
by the UK Biobank. The three different genetic modalities
require different preprocessing steps, which we detail in this
section.

A.3.1 Raw SNPs

The raw SNPs are a cross section of all SNPs collected
on microarray chips, collecting approximately 800k genetic
variants in total across all chromosomes. More information
on data collection can be found at https://biobank.
ctsu.ox.ac.uk/crystal/label.cgi?id=263.

The individual SNPs are coded in additive format, i.e. 0
stands for no deviation from the reference genome, 1 means
that one of the two chromosome copies has a deviation and
the other not, and 2 means that both chromosome copies
show a deviation from the reference genome. We treated
SNPs as continuous variables (opposed to, e.g. separating
them into three classes each) and imputed missing values by
mode imputation. Since 800k feature dimensions are chal-
lenging to handle, and SNPs are highly spatially correlated
along the genome [22], we only sampled every 100-th SNP
from the full microarray. We also only included SNPs on
the 22 autosomal (=not sex-specific) chromosomes, as han-
dling sex chromosomes requires special statistical care and

leads to non-shared features between genetic males and fe-
males. Together, this means we include 7,854 SNPs in our
models.

A.3.2 Polygenic Risk Scores

For computing polygenic risk scores, we downloaded
all PGS weight files included in the PGS Catalog [13]
(https://ftp.ebi.ac.uk/pub/databases/
spot/pgs/, last accessed October 11, 2021; at the time
of writing, a large batch of new scores has been added to the
PGS catalog), a collection of published PGS. The PGS files
provide weights for a linear model to compute risk scores
from the raw genetic data. To have a large intersection of
available SNPs for our UKB population and the weights
provided by the PGS catalog, instead of using the raw mi-
croarray data from Appendix A.3.1, we used imputed data.
The imputed data uses prior knowledge about correlations
between SNPs collected and not collected on the respec-
tive microarray (“linkage disequilibrium”, LD) to infer the
missing features with high accuracy. Imputed data was pre-
computed by the UKB, and more information can be found
at https://biobank.ctsu.ox.ac.uk/crystal/
label.cgi?id=100319. Using the imputed data, we
computed 481 polygenic scores for our cohort using the
PLINK software [21], ignoring scores that gave errors or
that only recorded genome positions in a different reference
genome build.

For some traits, there are multiple distinct risk scores
in the PGS catalog, as multiple independent studies have
been performed on the same trait. For example, the trait
“melanoma” appears 9 times in our subset of selected PGS
scores, while other traits, such as “insomnia” appear only
once. The scores contain partially overlapping genetic
markers, and the number of SNPs used for each individual
score vary from only 1 to several millions.

A.3.3 Burden Scores

We ran the Functional Annotation and Association Testing
Pipeline [19] to functionally annotate all the genetic vari-
ants present in the UK Biobank 200k exome sequencing re-
lease [27]. Protein loss of function and missense variants
that were predicted to be damaging were used to construct
burden scores across all protein coding genes. We consid-
ered only rare variants with minor allele frequencies below
1%. Of these variants 41% were ”singletons”, i.e. only ob-
served once in our sample. Specifically, each participant
was assigned a binary vector of length 18,574 correspond-
ing to the number of protein coding genes. For every gene,
the entry in this vector is 1 if the participant harbored at
least one potentially damaging variant in that gene, or 0
if no potentially damaging variants were observed in that
gene for that participant. This coding has been applied in
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rare-variant association studies in order to aggregate the ef-
fects of many rare variants within genes, where it can boost
statistical power and reduce the burden of multiple test-
ing [14, 19].

A.4. Training Details

We provide the training details for all pretraining (self-
supervised) and downstream tasks in this section.

• Batch sizes: we use a unified batch size of 64 across
all pretraining and downstream tasks.

• Optimizers: we use Adam optimizer [11] in all pre-
training and downstream tasks.

• Schedulers: during self-supervised pretraining (with
ContIG and the baselines), we decay the learning rate
with the cosine decay schedule without restarts [18].

• Learning rates: we use an initial learning rate of
0.001 across all tasks. However, we reduce the learn-
ing rate during training in the PALM semantic segmen-
tation task to 1× 10−4 after 10 warum epochs.

• Weight decay: in pretraining tasks, we use a weight
decay factor of 1×10−6. In downstream tasks, we use
a weight decay factor of 1× 10−5.

• Number of epochs: in pretraining tasks, we train all
models for 100 epochs. In downstream tasks, we fine-
tune for:

– For the PALM, APTOS, and RFMiD tasks: we
train all models for 50 epochs.

– For Cardiovascular risk prediction tasks: we fine-
tune all models for 5 epochs (≈ 8000 steps).

• Network architectures: for the image encoder, as
mentioned before, we use a Resnet50 [9] architecture
across all pretraining and downstream tasks. For the
genetics encoders, we vary between following choices:

– None: here we do not have any hidden fully-
connected layer for the genetics, and we feed
them as inputs to the projection head directly.

– H1: we process the genetic inputs with one hid-
den layer of size 2048. (followed by a ReLU ac-
tivation and Batchnorm1D layers)

– H12: we process the genetics with two hidden
layers, both of size 2048. (Each layer is followed
by a ReLU and Batchnorm1D)

For the projection head, we follow [3] in using two
fully-connected layers. The first has a size of 2048 and
is followed by a ReLU. The second has size of 128,
which is the projection embedding size. Finally, for
classification and regression downstream tasks we add
one fully-connected Linear layer on top to perform
the task. But for the PALM segmentation task, we add
a U-Net [23] decoder on top of the Resnet50 encoder.
For upsampling layers in the decoder, we use trans-
posed convolutional layers ConvTranspose2d.

• Loss functions: the used loss functions for each task
are as follows:

– ContIG: for training our method, we use a con-
trastive loss (NTXentLoss). This loss is im-
plemented using a cross-entropy loss, where the
model is trained to classify which sample is pos-
itive in each mini-batch. However, our version
of the NTXentLoss only does inter-modal con-
trasting, and not intra-modal. We set λ = 0.75
in this loss (Eq. 1 in the main paper), and the
temperature τ = 0.1. Note that a larger value of
λ gives more importance to image features than
genetic features.

– APTOS & RFMiD: we use the binary cross-
entropy loss in both tasks.

– PALM: we use a weighted combined loss of
Dice-loss [25] (weight=0.8) and binary cross-
entropy (weight=0.2).

– Cardiovascular risk classification (sex & smok-
ing status): we use a binary cross-entropy loss.

– Cardiovascular risk prediction (age & BMI &
SBP & DBP): we use the Mean Square Error
(MSE) loss.

– SimCLR [3]: this method uses the contrastive
NTXentLoss too. We similarly set the temper-
ature τ = 0.1.

– NNCLR [6]: this method uses the contrastive
NTXentLoss too. We similarly set the temper-
ature τ = 0.1.

– Simsiam [4]: this method does not use negative
sampling, and instead uses a Siamese network to
minimize the similarity between two augmented
views of the same image. Hence, the loss func-
tion used is the negative cosine similarity loss.

– BYOL [8]: this method has the same loss used in
Simsiam, which is the negative cosine similarity.

– Barlow Twins [29]: this method modifies the
contrastive loss to compute the cross-correlation
matrix between two sets of embeddings, which
are for the same batch of images but with differ-
ent image augmentations. Then, it tries to make
this matrix close to the identity matrix.

A.5. Implementation Details

We implement all of our methods using Python.
The libraries we rely on are PyTorch v1.9.1,
Pytorch-Lightning v1.4.8, torchvision
v0.10.0, torchmetrics v0.4.0, and
Lightly [15] (for baseline self-supervised imple-
mentations). We also follow the reproducibility instructions
for Pytorch-Lightning [16], i.e. by setting a unified
random seed of 42 for all scripts and workers, and by using
deterministic algorithms. We attach our source code



with this supplementary material submission.

B. Additional Downstream Results

B.1. Complete Finetuning Results

In this section, we present the full set of results for fine-
tuning our ContIG models versus the same baselines. These
extended evaluation results, in Tab. 1, show that ContIG
is advantageous to the baselines. The rows in Tab. 1 are
grouped in the following order: i) baseline trained from
scratch, ii) self-supervised baselines, iii) ContIG trained on
single genetic modalities with the images, and iv) ContIG
trained on multiple genetic modalities with images.

B.2. Linear Evaluation Results

In this section, we follow a linear evaluation proto-
col [3, 28, 30], meaning that the encoder weights are kept
frozen and we only train a linear classifier / regressor on top.
As shown in Tab. 2, models trained with our method “Con-
tIG” consistently outperform the baselines. Linear evalua-
tion aims to provide a good idea about the quality of seman-
tic representations stored in the model encoder.

B.3. Data-Efficiency Results

In this section, we assess the quality of semantic rep-
resentations in a semi-supervised experimental scheme. We
choose randomly 1% and 10% of the labels provided by UK
Biobank (UKB) [26], and perform the downstream tasks of
Cardiovascular Risk Factors prediction. Then, we evalu-
ate using the same fixed test split of 20% of UKB dataset
size. We choose this particular downstream task as UKB’s
dataset size is large enough to allow a simulation for expert
annotation collection process, i.e. 1% of number of over-
all labels is approximately 1000 samples, and such number
may simulate an annotation process. The other benchmark
datasets (APTOS [1], RFMiD [20], and PALM [7]) are rel-
atively small in size. The evaluation results shown in Tab. 3
compare models trained with ContIG to models trained with
the self-supervised baselines. ContIG outperforms the base-
lines in this evaluation scheme too. Note that all models
are trained on the same exact subset of individuals and also
evaluated on the same test set. The results for this data-
efficient evaluation scheme especially confirm the advan-
tages of pretraining with multiple genetic modalities using
the ”Outer” aggregation scheme. Notably, semi-supervised
pretraining of ContIG with only 1% labeled data still out-
performs the self-supervised baselines when they have 10×
as much labeled data available.

C. Additional Feature Explanation Results

C.1. Method Validation

We ran a baseline experiment to validate that our feature
explanation method properly attributes to meaningful fea-
tures. In this experiment, instead of genetic features, we
use phenotypic covariates such as age, sex, systolic and di-
astolic blood pressure (SBP and DBP), which can be pre-
dicted reliably from retinal fundus images. Additionally,
we include the first 40 principal components, which mostly
capture population structure information. As control vari-
ables, we also feed five random noise variables into the
training process, which have no association with the images
at all. Fig. 1 shows the aggregated feature explanations. As
expected, the noise variables (noise0, ... noise4)
get assigned very low explanation scores, while all other
variables have considerable influence. This validates that
our feature explanation approach can distinguish between
variables that carry true information relevant to the network
and variables that are unrelated to the images.

C.2. Multimodal Explanation Results

Fig. 2 shows the aggregated attribution scores for each
of the three modalities, Raw-SNPs, PGS, and Burdens, for
ContIG with the “Outer” training scheme. Fig. 2a shows
that PGS scores on average have more influence than indi-
vidual SNPs or burden scores. However, Fig. 2b also shows
that that in aggregate, raw SNPs and burden scores have
more total influence on the model. This is likely due to PGS
only having 481 features, while raw SNPs and Burdens have
7,854 and 18,574 features, respectively. This may also ex-
plain the small but counterintuitive performance drop from
ContIG (PGS) to ContIG (Outer RPB): the strongest signal,
PGS, gets “drowned out” by the less important but over-
abundant signal in the raw SNPs and burden scores.

D. Ablation Study

We conducted ablations for the hyper-parameters of
training batch size (b) and lambda (λ) –from Eq. 1, used
in the pretraining phase using our method ContIG. For the
batch size, due to memory limits of available GPUs, 64
multimodal samples is the maximum we could fit. We
consider drawing negative samples from a memory bank
instead a future work. Despite that, our method already
outperforms SOTA in downstream tasks (see Tab. 1 and
Tab. 2). Therefore, we try smaller batch sizes of 32, 16,
and as expected, we observe a slight drop in downstream
performance (≤ 2%). For lambda, we evaluate the values
of 0.5, 0.25, and also obtain comparable results (≤ 1%).
These results show that our method exhibits an improved
robustness to smaller batch sizes and lambda values.



Model & Genetics Encoder APTOS RFMiD PALM Cardio. Risk Pred.
QwKappa ↑ ROC-AUC ↑ Dice-Score ↑ MSE ↓ ROC-AUC ↑

Baseline - 80.47 91.64 77.25 3.440 56.29
SimCLR [3] - 81.83 91.88 70.41 3.451 59.38
SimSiam [4] - 75.44 91.28 72.26 3.442 57.37
BYOL [8] - 71.09 89.88 66.32 3.414 59.73
Barlow Twins [29] - 72.28 92.03 70.53 3.430 59.05
NNCLR [6] - 77.93 91.89 72.06 3.426 61.95
ContIG (Raw-SNP) None 81.99 92.27 74.96 3.366 64.71
ContIG (Raw-SNP) H1 84.01 93.22 76.98 3.254 70.10
ContIG (Raw-SNP) H12 82.56 93.09 77.02 3.201 69.58
ContIG (PGS) None 83.84 91.63 76.86 3.257 69.81
ContIG (PGS) H1 85.93 93.31 78.47 3.176 72.72
ContIG (PGS) H12 86.44 93.04 77.04 3.216 70.69
ContIG (Burden) None 82.92 93.68 76.89 3.273 71.91
ContIG (Burden) H1 83.22 93.03 76.49 3.160 72.37
ContIG (Burden) H12 83.61 93.14 76.72 3.236 71.50
ContIG (Inner RPB) None 83.49 93.31 77.11 3.195 71.68
ContIG (Inner RPB) H1 81.52 92.95 77.34 3.202 70.80
ContIG (Inner RPB) H12 80.24 92.94 75.37 3.235 68.89
ContIG (Outer RPB) None 82.93 93.01 76.31 3.260 69.16
ContIG (Outer RPB) H1 84.22 93.62 76.97 3.187 71.80
ContIG (Outer RPB) H12 84.21 93.41 77.51 3.233 71.13

Table 1. Downstream evaluation results by fine-tuning on each task. Bold indicates the best result, underlined is second best. RPB in our
method stand for the genetic modalities used: Raw-SNPs, PGS-scores, and Burden-scores. ↑ means higher is better, and ↓ lower is better.

Model & Genetics Encoder APTOS RFMiD PALM Cardio. Risk Pred.
QwKappa ↑ ROC-AUC ↑ Dice-Score ↑ MSE ↓ ROC-AUC ↑

SimCLR [3] - 35.02 86.53 59.77 3.998 52.26
SimSiam [4] - 21.25 87.91 56.58 3.998 53.13
BYOL [8] - 17.39 87.84 54.04 4.009 52.29
Barlow Twins [29] - 44.75 87.65 59.52 3.952 54.28
NNCLR [6] - 24.76 85.80 66.25 3.870 54.17
ContIG (Raw-SNP) None 59.14 89.24 72.82 3.683 59.07
ContIG (Raw-SNP) H1 69.85 89.99 75.25 3.443 64.36
ContIG (Raw-SNP) H12 68.72 90.47 74.39 3.439 69.58
ContIG (PGS) None 66.34 88.16 75.03 3.488 62.64
ContIG (PGS) H1 72.38 90.43 76.35 3.426 63.98
ContIG (PGS) H12 70.20 90.01 77.13 3.481 63.27
ContIG (Burden) None 70.29 91.08 75.31 3.453 64.72
ContIG (Burden) H1 70.67 90.62 75.42 3.421 64.70
ContIG (Burden) H12 71.22 91.10 76.09 3.434 64.84
ContIG (Inner RPB) None 70.26 89.94 75.27 3.439 63.84
ContIG (Inner RPB) H1 66.94 88.65 75.00 3.404 64.73
ContIG (Inner RPB) H12 68.41 90.56 73.08 3.457 63.45
ContIG (Outer RPB) None 66.94 90.38 75.29 3.448 65.20
ContIG (Outer RPB) H1 66.60 89.46 77.04 3.398 64.59
ContIG (Outer RPB) H12 68.57 90.51 76.50 3.388 65.20

Table 2. Downstream evaluation results by linear evaluation on each task. Similarly, the results obtained by ContIG outperform all
baselines. Bold indicates the best result, underlined is second best. RPB in our method stand for the genetic modalities used: Raw-SNPs,
PGS-scores, and Burden-scores. ↑ means higher is better, and ↓ lower is better.
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Figure 1. Explanation method validation. Shown is the mean absolute attribution for each feature aggregated over a batch-size of 1,000
individuals. noise0, ..., noise4 don’t carry any information and also get downweighted by our attribution method.
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(a) Absolute attribution for each modality, aggregated by mean.
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(b) Absolute attribution for each modality, aggregated by sum.

Figure 2. Absolute attributions by modality for ContIG (Outer RPB).

E. GWAS Analysis Details

We produced feature vectors by computing the hidden-
layer embedding for each image in the test-split of our
dataset (10% of the whole dataset, 7,079 individuals). In
contrast to the main training, we only used embeddings of
the left eye and only included each individual once. Feature
vectors were reduced to 10 dimensions using a PCA. Before
computing the association results, we also used an inverse-
normal transform [24] after conditioning on the potential
confounders “sex”, “age”, as well as the first 15 genetic
PCs. This ensures that the residuals of the marginal distri-
butions are approximately normally distributed and outlier
deviations from normality don’t artificially inflate the type-
1 error rate, leading to spurious correlations. We performed

the genetic association study with the PLINK2 software [2],
using a linear model for each of the ten dimensions individ-
ually. We again correct for the same confounders in the
linear model. Finally, we aggregate the summary statistics
of the ten individual features into a single p-value for each
SNP by using a Bonferroni-correction of the factor 10, fol-
lowing [12].

Genetic variants are locally highly correlated. Therefore,
we group significantly associated SNPs that are spatially
close and in LD together using the PLINK [21] clumping
functionality (using parameters clump-p1 = 5 · 10−8,
clump-p2 = 10−7, clump-r2 = 0.1, clump-kb =
150). We reported the number of independent associated
regions returned by this procedure in the main document.



(a) SimCLR (b) SimSiam

(c) BYOL (d) Barlow Twins

(e) NNCLR (f) Contig (Raw-SNP)

(g) Contig (PGS) (h) Contig (Burden)

(i) Contig (Inner RPB) (j) Contig (Outer RPB)

Figure 3. Manhattan plot for the GWAS with different training methods. The x-axis shows the position of each SNP on the genome, the
y-axis is the negative base-10 logarithm of the p-value for each SNP. Higher values correspond to lower p-values, correspond to stronger
signal. The red line corresponds to a significance threshold of 0.05 Bonferroni-adjusted for the number of SNPs; the green line corresponds
to “genome-wide significance” (5·10−8). P-values are clamped at 10−99 for clearer visualization (only relevant for the loci on chromosome
15 with a minimum p-value of 10−320). Note the different y-axis scales.

Fig. 3 shows the manhattan plot of genome-wide associ-
ations from the GWAS with ContIG and other pretraining

methods. A number of very strong signals, e.g. on chro-
mosomes 15 and 5, are known to be associated with skin



Model
Label Fraction

1% 10%
MSE ↓ ROC ↑ MSE ↓ ROC ↑

SimCLR [3] 4.029 51.43 3.762 54.29
SimSiam [4] 3.861 53.35 3.564 57.45
BYOL [8] 3.894 51.68 3.505 56.71
Barlow Twins [29] 3.788 51.89 3.558 56.86
NNCLR [6] 3.913 52.20 3.643 55.99
ContIG (Raw-SNP) 3.541 60.11 3.414 64.81
ContIG (PGS) 3.521 59.23 3.391 65.86
ContIG (Burden) 3.540 59.74 3.393 65.41
ContIG (Inner RPB) 3.511 59.95 3.397 65.71
ContIG (Outer RPB) 3.490 60.39 3.378 65.99

Table 3. Data-efficient evaluation results by fine-tuning on subsets
of UKB samples. All our ContIG models use the ”H1” genetic en-
coder variant. Bold indicates the best result, underlined is second
best. ↑ means higher is better, and ↓ lower is better.

b/λ APT RFM PLM UKB
QwK ↑ roc ↑ Dice ↑ MSE ↓ roc ↑

64/0.75 86.33 93.92 77.56 3.180 72.65
64/0.5 84.13 93.52 77.32 3.167 73.08
64/0.25 84.91 93.77 76.64 3.174 72.37
32/0.75 84.01 93.41 76.59 3.182 72.11
16/0.75 84.09 92.77 76.40 3.296 67.41

Table 4. Ablation results for batch-size (b) and lambda (λ).

pigmentation and cardiovascular traits. Manhattan plots for
the other pretrained models look similar but with less sig-
nal. Almost all models found the very strong signals on
chromosome 15. Interestingly, the manhattan plots for both
SimCLR and BYOL (Figures 3a & 3c) show clear signs of
a ill-fitted association model, with many (for BYOL) but
small, most likely spurious associations distributed over the
whole genome but no signal in the chromosome-15 pigmen-
tation region. This happens even after applying the inverse-
normal transformation to counteract outliers and is likely
due to different forms of confounding. This finding also
explains the surprisingly large number of hits for BYOL –
they are most likely false-positives. A more careful analy-
sis with mixed effect models [17] and in-depth inspection
of the image features is beyond the scope of this article.
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