Appendix (Supplementary Materials)

A. Introduction.

In this supplementary material, we provide more details
regarding baseline architecture (Appendix B), the boundary
problem Appendix C, visualization results (Appendix D),
the training setup (Appendix E), the effect of tempera-
ture (Appendix F), the effect of design regarding sub-
scene annotation (Appendix G), and experiment results
(Appendix H).

Especially, CBL achieves a new stat-of-the-art on S3DIS
with the newly released transformer model (Tab. 7).

B. Architecture of ConvNet Baseline

We show the specific architecture of our ConvNet base-
line in Fig. 1. With a consistent notation, X is the point
cloud in sub-sampling stage n, f; is the feature of point z;,
and N" = |X"| with N = N°. We use the multi-scale
head on all baselines when adapting the CBL.

C. Further Analysis on Boundary Problem

We further account for the type of areas and class-
specific analysis for better exploring the boundary problem.
Specifically, we provide per-class IoU score that is sepa-
rately calculated on boundary area B3; and inner area X — ;.

As shown in Tab. 2, we evaluate for all three base-
lines with and without the proposed CBL. We notice that,
large improvements are made on small objects, e.g. column,
which aligns with the observation in ?? in main paper. We
would like to add that, despite that CBL focuses only on
boundaries, improvements are also made on inner area. We
hypothesize the reason might be that the false boundary in
model predicted segmentation is restrained, as features in
inner area implicitly becomes more similar when the fea-
tures across boundaries are optimized to be more distinctive
by the CBL.

Moreover, for all three baselines, the improvement on
boundary area is much more than that made on inner area,
which is summarized in Tab. 1.

Therefore, with metrics separately calculated on bound-
ary and inner area, we clearly see that the improvement
brought by CBL is mainly from the boundary areas. Such
observation further emphasizes the importance of clear
scene boundaries in point cloud segmentation task.

. mloU OA mACC
baselines (+ CBL) boundary inner | boundary inner ‘ boundary inner
RandLA-Net [10] +3.3 +1.4 +4.1 -0.3 +3.4 +2.4
CloserLook3D [14] +0.6 +0.2 +0.1 +0.2 +0.7 +0.4
ConvNet +2.5 +2.0 +1.0 +0.7 +3.2 +2.8

Table 1. The improvement brought by CBL on different baselines
and types of area (boundary / inner area).

D. More Visualizations

We provide more qualitative results as a support for
the improvement made by CBL on boundaries. The vi-
sualization results include various scenes, including rooms
(Fig. 3), cluttered space (Fig. 4), hallways (Fig. 5), and of-
fices (Fig. 6). For each scene, we further attempt to visu-
alize the features discrimination between center points and
their corresponding neighbors and the results are presented
in the every second row. Specifically, we calculate the nor-
malized feature distance between the point feature f; and
features of its neighboring points { f; | z; € N;}. We then
take the mean distance for visualization.

According to the presented figures, it shows that the
CBL significantly enhances the feature distances around
the scene boundaries and improves the baseline to obtain
a more detailed and cleaner boundary in prediction for dif-
ferent type of scenes. The visualization is done on S3DIS
testset Area 5.

E. Training Setup in Details

For the RandLA-Net [10] and CloserLook3D [14] base-
lines, we follow their instructions of released code for
training and evaluation, which are here (RandLA-Net) and
here (CloserLook3D), respectively. Especially, in Closer-
Look3D [14], there are two non-parametric module, we use
the one with sin/cos spatial embedding.

For the ConvNet baseline, we use the SGD optimizer to
train for 600 epoch, with a weight decay of 0.001. We set
the initial learning rate to 0.01 and use a momentum of 0.98
with a decay rate of 0.1'/200. It roughly takes 24 hours
to train on 4 Nividia v100 GPUs, and we does not observe
obvious increase in training time after applying the CBL.


https://github.com/QingyongHu/RandLA-Net
https://github.com/zeliu98/CloserLook3D
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Figure 1. The detail architecture of ConvNet baseline.

methods | mloU OA mACC | ceiling floor wall beam column window door table chair sofa bookcase board clutter
RandLA-Net [10] | 44.1 67.1  59.1 655 694 522 0.0 21.4 28.6 550 550 56.0 41.1 412 45.8 42.1
+CBL | 474 712 625 782 859 560 0.0 30.3 25.7 426 584 609 50.0 42.5 522 442
CloserLook3D [14] | 50.0 76.6  58.5 80.7 88.6 639 0.0 21.1 15.6 575 733 647 522 43.1 37.2 52.6
+CBL | 50.6 767 592 809 886 646 0.0 26.5 15.6 559 730 650 504 47.6 38.4 51.2
ConvNet | 50.1 76.5 583 804 883 635 0.0 26.5 15.2 583 721 634 523 40.8 38.7 522
+CBL | 526 775 615 80.5 888 657 0.0 32.5 20.9 61.8 717 624 525 46.7 47.4 52.5

(a) The full metrics calculated on boundary points from ground truth (i.e., ;) only.

methods | mloU OA mACC | ceiling floor wall beam column window door table chair sofa bookcase board clutter
RandLA-Net [10] | 658 89.6  73.0 933 986 846 0.0 25.9 65.7 46.5 81.1 889 654 75.5 71.9 58.2
+CBL | 672 893 754 930 99.1 846 00 37.3 64.1 39.4 827 915 793 75.9 73.9 56.0
CloserLook3D [14] | 70.7 922 752 964 999 865 0.0 25.9 55.1 76.5 959 87.1 819 75.1 72.5 66.2
+CBL | 709 924 756 96.5 999 869 0.0 27.0 59.3 78.1 957 877 80.8 75.4 69.4 65.6
ConvNet | 71.2 92.1 75.5 95.0 99.8 859 0.0 34.6 56.0 827 954 874 813 73.8 68.4 65.7
+CBL | 732 928 783 953 999 88.0 0.0 38.4 62.2 76.4 959 875 827 81.2 75.2 68.6

(b) The full metrics calculated on inner points from ground truth (i.e., X — 13;,) only.

Table 2. The improvement CBL brought on baselines, separately calculated in boundary area (a) and inner area (b). The red denotes
improvement is made on baseline.

temperature | mloU ~ OA mACC temperature for CBL is within (0.5, 2), and we set the tem-
0.3 70.67 89.16  77.91 perature to 7 = 1 by default.
0.5 70.98 89.31 78.27
1 7133 89.40  78.69 G. Effect of Design of Sub-scene annotation
2 70.73 89.10 77.98
10 70.03 8897 77.58 While the sub-scene annotation is a distribution, we
only use the simple arg max when evaluating the boundary
Table 3. The effect of temperature on CBL. points. Therefore, it raises two particular question: 1) is it
necessary to maintain the distribution? 2) is there any better
F. Effect of Temperature in CBL way in utilizing the sub-scene annotation than the arg max?
In this section, we explore other alternatives and answer
We conduct empirical study on ScanNet [5] validation to this two questions with a particular focus of how they
set to analyze the effect of temperature 7 in the CBL (2?). affect the model performance on boundaries.
We use the ConvNet baseline and train for 600 epoch on Necessities of maintaining distribution. There are two

training set. As shown in Tab. 3, we find that the proper main reasons to leverage the average pooling on labels and



mloU (%) | Ground Building Pole Bollard Trashcan Barrier Pedestrian Car Natural
HDGCN [13] 68.3 99.4 93.0 67.7 75.7 25.7 44.7 37.1 81.9 89.6
ConvPoint [2] 75.9 99.5 95.1 71.6 88.7 46.7 52.9 53.5 89.4 85.4
RandLANet [10] 78.5 99.5 97.0 71.0 86.7 50.5 65.5 49.1 95.3 91.7
KP-Conv [ 18] 82.0 99.5 94.0 71.3 83.1 78.7 47.7 78.2 94.4 91.4
FKAConv [3] 82.7 99.6 98.1 77.2 91.1 64.7 66.5 58.1 95.6 93.9
PyramidPoint [19] 82.9 99.6 97.1 74.6 84.3 56.0 65.9 79.1 95.1 93.9
ConvNet 76.2 99.5 96.3 68.5 67.4 41.4 41.5 80.6 96.3 94.1
+ CBL 78.6 99.5 96.7 72.1 72.6 46.2 60.4 70.1 97.2 93.2

Table 4. Quantitative results on Paris-Lille-3D of NPM3D [
submission. The red denotes the improvement made on baseline.

maintain the distribution. First, current methods may not
preserve the original input points after sub-sampling, e.g.
grid sub-sampling in KPConv [18]. Therefore, the origi-
nal label of a sub-sampled point is not presented and the
sub-scene annotation is thus demanded. Although we may
use the label of the nearest point for approximation, Tab. 5
shows that CBL (nearest) is sub-optimal. Second, despite
that we only use the “argmax’ result of the sub-scene anno-
tation, maintaining distribution still preserves more infor-
mation than just maintaining “argmax” result. As “argmax”
discards the minor classes during sampling, such elimina-
tion of minority may further accumulate through more sub-
sampling stages and leads to imprecise boundary, as de-
picted in Fig. 2. Experimentally, in Tab. 5, though CBL
(argmax) improves boundary (B-IoU), it compromises over-
all performance.

Better treatment than Argmax. While “argmax” is
straight forward, it introduces the problem of “label-
flipping” when the distribution of sub-scene annotation is
close to a uniform distribution, i.e., when the number of
points of different classes are roughly the same.

To avoid this, we leverage the KL divergence as a mea-
sure of the semantic distance among sub-scene annotations.
We then threshold on the KL-distance to determine if two
sub-scene annotations belong to the same semantic class
or not, which further enables us to determine the boundary
points in sub-sampled point cloud. Specifically, we set the
threhold to 0.5 and CBL (kl) can be bring a small improve-
ment on overall performance, and a slightly larger boost on
boundary performance, as in Tab. 5. Yet, as “thresholding
KL distance” introduces extra hyper-parameters and com-
plexity, we opt for “argmax” for simplicity in the main pa-
per.

Summary. Therefore, we summarize the reason for design-
ing the sub-scene annotation as a distribution as it can pre-
serve much more information and can be extended to a more
robust boundary determination using KL-distance.

] benchmark, results obtained from online benchmark site by the time of
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Figure 2. With every 3 points being sub-sampled into 1 in each
stage, tracking distribution (soft label) describes original input
faithfully, but hard label fails due to accumulated errors.

mloU
methods overall @boundary @inner B-loy
ConvNet 67.4 50.1 71.2 59.6
ConvNet + CBL 69.4 52.6 73.1 61.5
ConvNet + CBL (nearest) 68.3 52.1 71.8 60.9
ConvNet + CBL (argmax) 66.8 50.6 70.4 60.6
ConvNet + CBL (kl) 69.5 52.5 73.2 62.0

Table 5. Same setting as in ?? in main paper.

H. Further Experiments

Results on ScanNet and NPM3D datasets. We provide
the detail results on ScanNet in Tab. 6; and the detail results
on NPM3D in Tab. 4.

CBL with Transformer. We use the open-source code
base (here) to re-produce the performance of newly released
point Transformer [24] on S3DIS [1] Area 5 dataset.

In Tab. 7, the same consistent improvement is made on
classes such as column. CBL with better boundaries further
boosts the overall performance to 71.0 in mloU, achieving
a new state-of-the-art performance.


https://github.com/POSTECH-CVLab/point-transformer

Method | mloU | bathtub bed books. cabinet chair counter curtain desk door floor other pic fridge shower sink sofa table toilet wall wndw
DCM-Net [17] | 65.8 718 702  80.6 619 813 468 693 494 524 941 449 298 51.0 821 675 727 568 82.6 803 637
VMNet [11] | 74.6 87.0 838 858 729 850 501 874 587 658 956 564 299 765 900 71.6 812 63.1 939 858 709
SparseConvNet [8] | 72.5 64.7 82.1 84.6 72.1 86.9 533 754 603 614 955 572 325 710 87.0 724 823 628 934 865 683
MinkowskiNet [4] | 73.6 859 818 832 709 840 521 853 660 643 951 544 286 73.1 893 675 772 683 874 852 727
O-CNN [20] | 76.4 75.8 79.6 839 74.6 90.7 56.2 85.0 68.0 672 978 61.0 335 777 81.9 847 83.0 69.1 972 885 727
OccuSeg [9] | 76.2 924 823 844 710 8.2 517 847 711 640 958 592 21.7 762 888 758 813 726 932 868 744
Mix3D [15] | 78.1 96.4 855 843 78.1 85.8 57.5 83.1 685 714 979 594 31.0 80.1 89.2 84.1 819 723 940 887 725
BA-GEM [7] * | 63.5
PointConv [21] | 66.6 78.1 759 699 64.4 82.2 47.5 779 564 504 953 428 203 586 75.4 66.1 753 588 902 813 642
PointASNL [22] | 66.6 703 781 751 655 830 471 769 474 537 951 475 279 635 69.8 675 751 553 816 80.6 703
KP-Conv [18] | 68.4 84.7 75.8 184 64.7 81.4 47.3 77.2 60.5 594 935 450 181 587 80.5 69.0 785 614 882 819 632
FusionNet [23] | 68.8 704 741 754 656 829 501 741 609 548 950 522 371 633 756 715 711 623 861 814 658
JSENet [12] | 69.9 88.1 762 821 66.7  80.0 522 792 613 60.7 935 492 205 576 853 69.1 758 652 872 828 649
RFCR [6] | 70.2 889 745 813 672 818 493 815 623 61.0 947 470 249 594 848 705 779 646 892 823 611
ConvNet + CBL | 70.5 769 715 809 687 8.0 439 812 66.1 59.1 945 515 17.1 633 856 720 79.6 668 839 847 689

Table 6. Quantitative results on ScanNet [5] benchmark, results obtained from online benchmark site by the time of submission. We group
method by the 3D representation type, which is respectively, from top to down, 3D + mesh, 3D voxel and 3D point, and we also use 3D
point. The empty line denotes no record of detailed performance found. The method with * also considers boundary.

Input

Ground Truth

Baseline

Figure 3. Large rooms. We compare the results of ConvNet baseline with CBL. On the every second row, we visualize the boundary points
calculated from the ground truth label, and the feature discrimination among neighboring points for each model. The improvement on the
first row and the enhanced feature discrimination on the second row show that CBL improves the features across boundaries to obtain a

better segmentation quality on boundary areas. The visualization is done on S3DIS testset Area 5.

methods | mloU OA mACC | ceiling floor wall beam column window door table chair sofa  bookcase board clutter
pttrans [24]* | 704 90.8 76.5 940 985 863 0.0 38.0 63.4 743 891 824 743 80.2 76.0 593
pttrans [24] | 70.0  90.5 76.5 952 98,6 85.1 0.0 36.7 62.5 759 815 910 751 71.9 764 602
+CBL | 71.0% 90.9*  77.5% | 943* 983 874* 0.0 42.1% 64.0%  78.5% 825 88.9* 75.1% 71.1 81.3* 59.6*

Table 7. Quantitative results on S3DIS Area 5 dataset [ 1], showing the mean IoU (mloU), overall accuracy (OA), mean accuracy (mACC),
and per-class IoU scores. We include both performance reported in original paper (with *, the first row) and the re-produced performance
(without *, the second row). We use red to denote improvement over the re-produced point transformer, and * to denote the improvement
over the performance reported in original paper.



Input Ground Truth Baseline CBL Improvement

Figure 4. Cluttered space. Same as above (Fig. 3).

Input Ground Truth Baseline CBL Improvement

Figure 5. Hallways. Same as above (Fig. 3).



Input Ground Truth Baseline CBL Improvement

Figure 6. Offices. Same as above (Fig. 3).
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